RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT
Better understanding of blood vessel constrictor needed to harness its power for patients

Sep 18, 2008 - 4:00:00 AM
The first antagonists blocked both known receptors: a and b; the next generation blocked one or the other but still didn't work. A notable exception is endothelin-1 antagonists that reduce excessive pressure and tissue buildup inside the blood vessels of patients with pulmonary hypertension. In addition to constricting blood vessels, endothelin-1 can help blood vessels grow bigger but too much can result in protein deposits that stiffen blood vessel walls.

 
[RxPG] To harness endothelin-1's power to constrict blood vessels and help patients manage high blood pressure or heart failure, scientists must learn more about how endothelin functions naturally and in disease states, says a Medical College of Georgia researcher.

Despite strong laboratory evidence that blocking endothelin-1 receptors would be an effective, targeted therapy for these two major health problems, the drugs failed patients, says Dr. Adviye Ergul, physiologist in the MCG Schools of Medicine and Graduate Studies.

These endothelin-1 receptors are logical targets for drugs to treat hypertension because of their key role in vasoconstriction, but the targets are moving and we don't know how one target plays off another, says Dr. Ergul, who discussed novel aspects of endothelin receptor interaction during the 62nd High Blood Pressure Research Conference and Workshop in Atlanta.

The current thinking in pharmacology is one hormone, one receptor equals boom: the effect. I think cells are much smarter, she says. This week, Dr. Ergul challenged colleagues across the country to consider emerging evidence that usual receptor communication is likely more complex than they thought and that disease may significantly alter communication.

Endothelin-1 receptors are known to interact: one way blood vessels keep a healthy tone, for example, is that a and b receptors on smooth muscle cells prompt constriction while b receptors on the lining of blood vessels work with nitric oxide to promote relaxation. Endothelin-1 receptors on the kidneys are a player as well, helping wring out excess water and salt. There is a delicate balance, says Dr. Ergul.

But there's apparently more to the relationships. She holds up a handful of recent journal articles which reflect mounting evidence that receptors actively work as teams of two or more. That teamwork could change their function. New technology enables scientists to literally watch receptors move closer together on a cell surface, clearly indicating that something is going on.

Numerous drugs have been developed that are antagonists that can block these receptors with the idea they can be used in hypertension and heart failure. In animal models, they worked well, she says. But in clinical trials they failed badly; a drug for heart failure actually worsened problems such as labored breathing and swelling in patients already having difficulty moving blood through their body.

The first antagonists blocked both known receptors: a and b; the next generation blocked one or the other but still didn't work. A notable exception is endothelin-1 antagonists that reduce excessive pressure and tissue buildup inside the blood vessels of patients with pulmonary hypertension. In addition to constricting blood vessels, endothelin-1 can help blood vessels grow bigger but too much can result in protein deposits that stiffen blood vessel walls.

Scientists have been scratching their heads over why blocking these receptors hasn't panned out; they've even looked for an atypical receptor that might explain it. But Dr. Ergul, an expert on endothelin-1's role in diabetes, believes the unexpected results are better explained by poorly understood relationships in normal and disease states. How receptors dimerize, how they get closer together on the cell surface, likely needs to affect our drug design, she says.




Advertise in this space for $10 per month. Contact us today.


Related Latest Research News
Drug activates virus against cancer
Bone loss associated with increased production of ROS
Sound preconditioning prevents ototoxic drug-induced hearing loss in mice
Crystal methamphetamine use by street youth increases risk of injecting drugs
Johns Hopkins-led study shows increased life expectancy among family caregivers
Moderate to severe psoriasis linked to chronic kidney disease, say experts
Licensing deal marks coming of age for University of Washington, University of Alabama-Birmingham
Simple blood or urine test to identify blinding disease
Physician job satisfaction driven by quality of patient care
Book explores undiscovered economics of everyday life

Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)