RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT
Chemistry turns killer gas into potential cure

Oct 15, 2007 - 4:00:00 AM
Professor Mann added: �This project provides an excellent example of how non-biological sciences like chemistry can underpin important advances in healthcare.�

 
[RxPG] Despite its deadly reputation, the gas carbon monoxide (CO) could actually save lives and boost health in future as a result of leading-edge UK research.

Chemists at the University of Sheffield have discovered an innovative way of using targeted small doses of CO which could benefit patients who have undergone heart surgery or organ transplants and people suffering from high blood pressure.

Although the gas is lethal in large doses, small amounts can reduce inflammation, widen blood vessels, increase blood flow, prevent unwanted blood clotting � and even suppress the activity of cells and macrophages* which attack transplanted organs. The researchers have developed innovative water-soluble molecules which, when swallowed or injected, safely release small amounts of CO inside the human body.

Research carried out in the last decade had already highlighted possible advantages, as CO is produced in the body as part of its own natural defensive systems. However, the problem has been finding a safe way of delivering the right dose of CO to the patient. Conventional CO inhalation can run the risk of patients or medical staff being accidentally exposed to high doses. Now for the first time, thanks to chemistry, an answer appears to have been found.

The new CO-releasing molecules (CO-RMs) have been developed in partnership with Dr Roberto Motterlini at Northwick Park Institute for Medical Research (NPIMR) and with funding from the Engineering and Physical Sciences Research Council (EPSRC).

�The molecules dissolve in water, so they can be made available in an easy-to-ingest, liquid form that quickly passes into the bloodstream,� says Professor Brian Mann, from the University's Department of Chemistry, who led the research. �As well as making it simple to control how much CO is introduced into a patient�s body, it will be possible to refine the design of the molecules so that they target a particular place while leaving the rest of the body unaffected.�

The CO-RMs consist of carbonyls** of metals such as ruthenium, iron and manganese which are routinely used in clinical treatments. They can be designed to release CO over a period of between 30 minutes and several hours, depending on what is required to treat a particular medical condition.

As well as boosting survival rates and cutting recovery times, the new molecules could ease pressure on hospital budgets by reducing the time that patients need to spend in hospital, for example after an operation. They could even help some patients to avoid going into hospital in the first place.

Professor Mann added: �This project provides an excellent example of how non-biological sciences like chemistry can underpin important advances in healthcare.�

hemoCORM Ltd, a spinout company set up in 2004 by the University of Sheffield and NPIMR, is now taking the research towards commercialisation. It is hoped that, after further development work, Phase 1 clinical trials can begin in around two years, with deployment in the healthcare sector potentially achievable in around five years.




Advertise in this space for $10 per month. Contact us today.


Related Latest Research News


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)