RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT
Crucial Roles in Drosophila Development for Little-Known Protein

Mar 18, 2005 - 5:31:00 PM
D-mib and Neur are ubiquitin ligases, enzymes that attach the small protein ubiquitin onto a target protein. While ubiquitination was first appreciated as a tag for protein degradation, more recently, it has been recognized to be a signal for endocytosis, a process that brings substances outside a cell into the cell.

 
[RxPG] In the intricate dance of animal development, several critical steps are choreographed by the Notch receptor and its ligands, including Delta (Dl) and Serrate (Ser). When these ligands bind, an intracellular segment of the receptor is cleaved off and becomes a transcriptional regulator within the nucleus. While Dl and Ser both occur in Drosophila, and appear to have similar interactions with Notch, less is known about exactly how they trigger Notch activity. In particular, few details are known about the activators of Dl and Ser, which begin the cascade ultimately leading to Notch signaling. In this issue, François Schweisguth and colleagues show that two activators, Drosophila mind bomb (D-mib) and Neuralized (Neur), while sharing a similar molecular activity, have distinct roles in Notch-related Drosophila development, and elucidate several important activities of the heretofore mysterious D-mib.

D-mib and Neur are ubiquitin ligases, enzymes that attach the small protein ubiquitin onto a target protein. While ubiquitination was first appreciated as a tag for protein degradation, more recently, it has been recognized to be a signal for endocytosis, a process that brings substances outside a cell into the cell. Endocytosis, in turn, has recently been found to be a key step in Dl activation of Notch; its importance to Ser signaling has not been previously identified. In Drosophila, Neur targets Dl, and Dl is endocytosed. In zebrafish, Dl is a target for a separate ubiquitin ligase, Mind bomb. But the function of the Drosophila homolog, D-mib, has not been elucidated. Thus, the essential questions in this study were, what role does D-mib play in Drosophila, and how is Ser signaling regulated?

Schweisguth and colleagues studied development in a D-mib mutant. The pattern of phenotypic changes seen was in keeping with a loss of Dl signaling, indicating that D-mib interacts with Dl, just as Neur does. But D-mib also interacts with the other Notch ligand, Ser, as shown by the aberrant distribution of Ser in the absence of D-mib. Furthermore, endocytosis of Ser occurred normally in the presence of D-mib, and was strongly inhibited in its absence. Acting through Notch, Ser activates a downstream gene that codes for a protein called Cut, whose absence leads to a particular pattern of wing defects. This pattern was seen in D-mib mutants, and could not be rescued by overexpressing Ser, thus indicating that D-mib not only prompts endocytosis of Ser, but allows it to trigger Notch signaling. It’s unclear whether D-mib ubiquitinates Ser, as this study did not specifically address that question.

While Neur and D-mib differ structurally, they share the same molecular function, ubiquitination of Notch ligands, and the authors show that, when ectopically expressed, each can at least partially compensate for the absence of the other. Nonetheless, they normally have distinct developmental functions, owing largely to the fact that they are expressed in different locations and at different times during development, and thus mutations in the two lead to different patterns of developmental aberrations.



Publication: (2005) Crucial Roles in Drosophila Development for Little-Known Protein. PLoS Biol 3(4): e139.
On the web: Print PDF (38K) 

Advertise in this space for $10 per month. Contact us today.


Related Latest Research News


Subscribe to Latest Research Newsletter

Enter your email address:


 Additional information about the news article
DOI: 10.1371/journal.pbio.0030139

Published: March 15, 2005

Copyright: © 2005 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)