RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT
Life and death in the living brain

Aug 10, 2009 - 4:00:00 AM
These procedures were done with the approval of the UW's Institutional Animal Care and Use Committee and the National Institute of Mental Health. The latter funded the research.

 
[RxPG] Like clockwork, brain regions in many songbird species expand and shrink seasonally in response to hormones. Now, for the first time, University of Washington neurobiologists have interrupted this natural annual remodeling of the brain and have shown that there is a direct link between the death of old neurons and their replacement by newly born ones in a living vertebrate.

The scientists introduced a chemical into one side of sparrow brains in an area that helps control singing behavior to halt apoptosis, a cell suicide program. Twenty days after introduction of the hormones the researchers found that there were 48 percent fewer new neurons than there were in the side of the brain that did not receive the cell suicide inhibitor.

This is the first demonstration that if you decrease apoptosis you also decrease the number of new brain cells in a live animal. The next step is to understand this process at the molecular level, said Eliot Brenowitz, a UW professor of psychology and biology and co-author of a new study. His co-author is Christopher Thompson, who earned his doctorate at the UW and is now at the Free University of Berlin.

The seasonal hormonal drop in birds may mimic what is an age-related drop in human hormone levels. Here we have a bird model that is natural and maybe similar genes have a similar function in humans with degenerative diseases such as Alzheimer's and Parkinson's, as well as strokes, which are associated with neuron death.

The research involved Gambel's white-crowned sparrows, a songbird subspecies that winters in California and migrates to Alaska in the spring and summer to breed and raise its young. The sparrow's brain regions, including one called the HVC, which control learned song behavior in males, expand and shrink seasonally. Thompson and Brenowitz previously found that neurons in the HVC begin dying within four days hours after the steroid hormone testosterone is withdrawn from the bird's brains. Thousands of neurons died over this time.

In the new work, the UW researchers received federal and state permission to capture 10 of the sparrows in Eastern Washington at the end of the breeding season. After housing the birds for three months, they castrated the sparrows and then artificially brought them to breeding condition by implanting testosterone and housing them under the same long-day lighting conditions that they would naturally be exposed to in Alaska. This induced full growth of the song control system in the birds' brains.

Next the researchers transitioned the birds to a non-breeding condition by reducing the amount of light they were exposed to and removing the implanted testosterone. They infused the HVC on one side of the brain with chemicals, called caspase inhibitors, that block apoptosis, and two chemical markers that highlight mature and new neurons. Twenty days later the birds were euthanized and sections of their brains were examined under a microscope.

These procedures were done with the approval of the UW's Institutional Animal Care and Use Committee and the National Institute of Mental Health. The latter funded the research.

The HVC straddles both hemispheres of the brain but the two sides are not directly connected. When Thompson counted the number of newly born neurons that had migrated to the HVC, he found only several hundred of them among the hundreds of thousands of mature neurons he examined. And there were nearly half the number of new neurons in the side of the HVC where brain cell death was inhibited compared with the other, untreated side of the HVC. This shows there is some direct link between the death of old neurons and the addition of new cells that were born elsewhere in the brain and have migrated, said Brenowitz. What allows new cells to be incorporated into the brain is the big question. This is particularly true on a molecular level where we want to know what is the connection between cell death and neurogenesis and which genes are responsible.




Advertise in this space for $10 per month. Contact us today.


Related Latest Research News


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)