RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT
Lung cancer and melanoma laid bare

Dec 16, 2009 - 5:00:00 AM
The human genome is large. Moreover, there are more than one hundred different types of cancer and sequencing genomes is expensive. To ensure that thousands of cancers ultimately are sequenced in the same way as these two, the International Cancer Genome Consortium has been established, on the model of the Human Genome project itself to coordinate cancer genome sequencing across the globe.

 
[RxPG] Research teams led by the Wellcome Trust Sanger Institute announce the first comprehensive analyses of cancer genomes.

All cancers are caused by mutations in the DNA of cancer cells which are acquired during a person's lifetime. The studies, of a malignant melanoma and a lung cancer, reveal for the first time essentially all the mutations in the genomes of two cancers.

Lung cancer causes around one million deaths worldwide each year: almost all are associated with smoking. The number of mutations found suggest that a typical smoker would acquire one mutation for every 15 cigarettes smoked.

Although malignant melanoma comprises only 3% of skin cancer cases, it is the cause of three out of four skin cancer deaths. The melanoma genome contained more than 30,000 mutations that carried a record of how and when they occurred during the patient's life.

These are the two main cancers in the developed world for which we know the primary exposure, explains Professor Mike Stratton, from the Cancer Genome Project at the Wellcome Trust Sanger Institute. For lung cancer, it is cigarette smoke and for malignant melanoma it is exposure to sunlight. With these genome sequences, we have been able to explore deep into the past of each tumour, uncovering with remarkable clarity the imprints of these environmental mutagens on DNA, which occurred years before the tumour became apparent.

We can also see the desperate attempts of our genome to defend itself against the damage wreaked by the chemicals in cigarette smoke or the damage from ultraviolet radiation. Our cells fight back furiously to repair the damage, but frequently lose that fight.

The studies used powerful new DNA sequencing technologies to decode completely the genome of both tumour tissue and normal tissue from a lung cancer and a malignant melanoma patient. By comparing the genome sequence from the cancer to the genome from healthy tissue they could pick up the changes specific to the cancer. The studies are the first to produce comprehensive genome-wide descriptions of all classes of mutation, producing rich accounts of the genetic changes in the development of the two cancers.

In the melanoma sample, we can see sunlight's signature writ large in the genome, says Dr Andy Futreal, from the Wellcome Trust Sanger Institute. However, with both samples, because we have produced essentially complete catalogues, we can see other, more mysterious processes acting on the DNA. Indeed, somewhere amongst the mutations we have found lurk those that drive the cells to become cancerous. Tracking them down will be our major challenge for the next few years.

The lung cancer genome contained more than 23,000 mutations, the melanoma more than 33,000. Identifying the causative mutations among the large number found poses a challenge, but the complete genome sequences mean, that for the first time, that challenge can be met.

Nearly ten years on, we are still reaping the benefit from the first human genome sequence and we have much still to do to get to grips with these new disrupted landscapes of cancer genomes, explains Dr Peter Campbell from the Wellcome Trust Sanger Institute. But the knowledge we extract over the next few years will have major implications for treatment. By identifying all the cancer genes we will be able to develop new drugs that target the specific mutated genes and work out which patients will benefit from these novel treatments.

A complete genome catalogue for each patient would be expected to help select between treatments and to direct treatment in the most efficient and cost-effective way. The Sanger Institute is already working with researchers at Massachusetts General Hospital on a large scale project to tie genetic changes in cancers to their responses to anticancer treatments.

We want to drive healthcare through better understanding of the biology of disease, says Sir Mark Walport, Director of the Wellcome Trust. Previous outcomes from our Cancer Genome Project are already being fed into clinical trials, and these remarkable new studies further emphasise the extraordinary scientific insights and benefits for patients that accrue from studying the genome of cancer cells.

This is the first glimpse of the future of cancer medicine, not only in the laboratory, but eventually in the clinic. The findings from today will feed into knowledge, methods and practice in patient care.

The human genome is large. Moreover, there are more than one hundred different types of cancer and sequencing genomes is expensive. To ensure that thousands of cancers ultimately are sequenced in the same way as these two, the International Cancer Genome Consortium has been established, on the model of the Human Genome project itself to coordinate cancer genome sequencing across the globe.

These catalogues of mutations across the broad diversity of cancer types will provide powerful insights into the biology of cancer and will be the foundation for understanding cancer causation and improving prevention, detection and treatment.




Advertise in this space for $10 per month. Contact us today.


Related Latest Research News


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)