RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT
MIT uncovers key blood protein

Oct 11, 2007 - 4:00:00 AM
With this new understanding of HRI's dual role in iron recycling-that it both keeps iron in the body and puts it to work-Chen is conducting a search for small molecules that might modulate the HRI signaling pathway. In turn, these compounds could potentially help diseased precursors of red blood cells survive and boost the iron recycling process.

 
[RxPG] CAMBRIDGE, MA--Scientists working in the only lab at MIT doing hematology research have uncovered a protein that plays a key role in the recycling of iron from blood.

Their work, described in the October 11 Journal of Clinical Investigation, could lead to new therapies for certain inherited blood disorders such as beta-thalassemia, a condition that causes chronic anemia. The team is led by Jane-Jane Chen, a principal research scientist in the Harvard-MIT Division of Health Sciences and Technology (HST).

Two years ago Chen and colleagues showed that a protein, heme-regulated eukaryotic translational initiation factor 2 ±-subunit (eIF2-alpha) kinase, or HRI for short, keeps mice with beta-thalassemia alive. This protein minimizes an abnormal and toxic imbalance of globin chains, the protein base for the hemoglobin found in red blood cells. Hemoglobin carries oxygen to our organs and carts away carbon dioxide waste.

In the new work, the team has found that HRI also plays a key role in the body's iron recycling process. Chen observed that this process falters in mice lacking HRI. As a result, less iron was available for use in the creation of new red blood cells.

A closer look revealed that HRI influences two mechanisms in this recycling process. First, a lack of HRI reduces levels of another protein called hepcidin. Hepcidin, recently discovered to be the master regulator of the iron cycle, releases iron from stores in the body and makes it available to be processed into hemoglobin. Without hepcidin, the body retains iron, but never puts it to work.

The team also found that HRI, which is expressed predominantly in the precursors of red blood cells, is expressed in macrophages. Macrophages are cells that literally reach out and grab dying red blood cells and eat them, digesting them and releasing the iron from their hemoglobin back into the system.

A lack of HRI causes these macrophages to lose their appetite, gobbling down fewer red blood cells. Instead of being digested and recycled, the red blood cells die and end up excreted through the kidneys. The result is a net loss of iron from the body.

With this new understanding of HRI's dual role in iron recycling-that it both keeps iron in the body and puts it to work-Chen is conducting a search for small molecules that might modulate the HRI signaling pathway. In turn, these compounds could potentially help diseased precursors of red blood cells survive and boost the iron recycling process.

“Perhaps we will find a compound that could help patients with beta-thelassemia or other diseases where HRI plays a role,” said Chen. Such conditions include a genetic disorder called erythropoietic protoporphyria (EPP), which causes photosensitivity and liver disease, as well as a condition called the anemia of inflammation in which the iron recycling process breaks down under the influence of stress, chronic disease, aging, or cancer.




Advertise in this space for $10 per month. Contact us today.


Related Latest Research News


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)