RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT
Massive microRNA scan uncovers leads to treating muscle degeneration

Oct 17, 2007 - 4:00:00 AM
The team also defined the abnormal microRNA “signatures” that correspond to each of the ten wasting diseases. They hope these will shed light on the genes and disease mechanisms involved in the most poorly understood and least treatable of the degenerative disorders, such as inclusion body myositis.

 
[RxPG] Researchers have discovered the first microRNAs – tiny bits of code that regulate gene activity – linked to each of 10 major degenerative muscular disorders, opening doors to new treatments and a better biological understanding of these debilitating, poorly understood, often untreatable diseases. The study, to be published online this week by the Proceedings of the National Academy of Sciences, was led by Iris Eisenberg, PhD, of the Program in Genomics at Children’s Hospital Boston. Louis Kunkel, PhD, director of the Program in Genomics and an investigator with the Howard Hughes Medical Institute, was senior investigator.

The disorders include the muscular dystrophies (Duchenne muscular dystrophy, Becker muscular dystrophy, limb girdle muscular dystrophies, Miyoshi myopathy, and fascioscapulohumeral muscular dystrophy); the congenital myopathies (nemaline myopathy); and the inflammatory myopathies (polymyositis, dermatomyositis, and inclusion body myositis). While past studies have linked them with an increasing number of genes, it's still largely unknown how these genes cause muscle weakness and wasting, and, more importantly, how to translate the discoveries into treatments.

For instance, most muscular dystrophies begin with a known mutation in a “master gene,” leading to damaged or absent proteins in muscle cells. In Duchenne and Becker muscular dystrophies, the absent protein is dystrophin, as Kunkel himself discovered in 1987. Its absence causes muscle tissue to weaken and rupture, and the tissue becomes progressively nonfunctional through inflammatory attacks and other damaging events that aren’t fully understood.

“The initial mutations do not explain why patients are losing their muscle so fast,” says Eisenberg. “There are still many unknown genes involved in these processes, as well as in the inflammatory processes taking place in the damaged muscle tissue.”

She and Kunkel believe microRNAs may help provide the missing genetic links. Their team analyzed muscle tissue from patients with each of the ten muscular disorders, discovering that 185 microRNAs are either too abundant or too scarce in wasting muscle, compared with healthy muscle.

Discovered in humans only in the past decade, microRNAs are already known to regulate major processes in the body. Therefore, Eisenberg believes microRNAs may be involved in orchestrating the tissue death, inflammatory response and other major degenerative processes in the affected muscle tissue. The researchers used bioinformatics to uncover a list of genes the microRNAs may act on, and now plan to find which microRNAs and genes actually underlie these processes.

The findings raise the possibility of slowing muscle loss by targeting the microRNAs that control these “cascades” of damaging events. This approach is more efficient than targeting individual genes.

The team also defined the abnormal microRNA “signatures” that correspond to each of the ten wasting diseases. They hope these will shed light on the genes and disease mechanisms involved in the most poorly understood and least treatable of the degenerative disorders, such as inclusion body myositis.

“At this point, it’s very theoretical, but it’s possible,” says Eisenberg.




Advertise in this space for $10 per month. Contact us today.


Related Latest Research News


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)