RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT
Microbial 'cheaters' help scientists ID 'social' genes

Feb 13, 2008 - 5:00:00 AM
The tests found that cheaters would exploit virtually any advantage to increase their share of spores in the next colony. While strategies for cheating varied at the proteomic level, the study found some cheaters use a common genetic strategy -- they piggyback onto other essential functions. In a previous study, Strassmann and colleagues had identified a cheater that used the same strategy, and she said the broader study indicates that the dual-function strategy may be shared by other successful cheaters.

 
[RxPG] HOUSTON, Feb. 13, 2008 -- The first genome-wide search for genes governing social behavior has found that even the simplest social creatures -- the amoebae Dictyostelium discoideum -- have more than 100 genes that help regulate their cooperative behavior.

The study by scientists at Rice University and Baylor College of Medicine (BCM) was published online this week by the journal Nature. It marks one of the first large-scale attempts to combine evolutionary biology with genomics in a systematic search for genes tied to social behavior.

This pool of genes is going to allow us to understand the genetic architecture of social behavior, said co-author Joan Strassmann, Rice's Harry C. and Olga K. Wiess Professor of Ecology and Evolutionary Biology.

Though little understood, social cooperation among microbes causes major medical and industrial problems. Medically, cooperation underlies conditions as mundane as tooth decay to more serious conditions like chronic infections associated with medical implants. Industrially, slimy colonies of bacteria also foul filters at water treatment plants and other facilities, causing millions of dollars of damage each year.

Rice and BCM's genome-wide investigation took five years and required the detailed study of some 10,000 randomly mutated strains of D. discoideum. The basic idea was to knock out genes at random and put each mutant through 10 rounds germination, growth and development to identify mutations that led to cheating, Strassmann said.

Cheating mutations were found in more than 100 genes. Since there are advantages to be gained from cheating, Strassmann said the real mystery, from an evolutionary point of view, is how species like D. discoideum manage to keep cheaters from out-producing and eliminating cooperation altogether.

This is just the beginning, said co-author Adam Kuspa, BCM's S. J. Wakil Chair of Biochemistry and Molecular Biology. Now we need to define key molecular mechanisms that might serve to stabilize cell cooperation.

Strassmann said, Cheating is to be expected. Cooperation is the real story. Since cheaters can thrive without these 100-plus genes, there has to be some other reason that they're still in the genome.

D. discoideum are a common soil microbe. Their social order is one of the simplest in nature and it's an oft-used laboratory model for sociality. Though loners in times of plenty, D. discoideum form colonies when food is scarce, and work collectively to ensure their survival. About one fifth of the colony's individuals form a tall, thin stalk. The rest climb the stalk and clump together into a small bulb that can be carried away to better environs by the wind or on the legs of passing insects.

This simple social system poses an evolutionary conundrum for biologists; the individuals in the stalk give themselves up altruistically to support the colony, so what's to keep more selfish strains of D. discoideum from cheating the system, avoiding the stalk and out-reproducing their altruistic neighbors?

Strassmann and co-authors Gad Shaulsky, associate professor of molecular and human genetics at BCM, and David Queller, Rice's Harry C. and Olga K. Wiess Professor of Ecology and Evolutionary Biology, have identified a handful of cheater mutations for D. discoideum in prior studies. However, identifying cheaters was just the start in the genome-wide study. Cheaters were also subjected to additional tests so the team could find out how exactly how they cheated. The scientists also examined the cheaters' genetic code to locate the precise site of the cheater mutations.

The tests found that cheaters would exploit virtually any advantage to increase their share of spores in the next colony. While strategies for cheating varied at the proteomic level, the study found some cheaters use a common genetic strategy -- they piggyback onto other essential functions. In a previous study, Strassmann and colleagues had identified a cheater that used the same strategy, and she said the broader study indicates that the dual-function strategy may be shared by other successful cheaters.

The evolutionary opportunities for moves and countermoves appear to create a kind of genetic arms race in which cheating mutations are met with counter-mutations, Strassmann said. In this arena, cheating is often going to be piggybacked onto essential functions, making it hard to get rid of and hard to control.




Advertise in this space for $10 per month. Contact us today.


Related Latest Research News


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)