RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Nov 2, 2013 - 11:50:46 AM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT
Molecular switch controls the destiny of self-eating cells

Jul 17, 2013 - 4:00:00 AM
The researchers studied how the outcome of the autophagy was affected by the acetylation of histone H4, and found that during the processes the acetylation of H4 decreased, which led to a reduction in the expression of autophagy-related genes. If this specific histone modification was blocked, the autophagic cells died.

 
[RxPG] The study is the result of a collaboration of scientists at Karolinska Institutet in Sweden, University of Michigan, and University of California San Diego, USA, who were interested in finding out whether autophagy can be affected by events in the cell nucleus. Surprisingly, they discovered that a signal chain in the nucleus serves as a kind of molecular switch that determines whether the cell dies or survives.

Put simply autophagy is a process whereby the cell consumes parts of itself, and is a way for it to clean up abnormal lumps of proteins and rid itself of damaged organelles (the cell's 'organs') by breaking them down. The cell also uses the process when stressed by external circumstances, such as starvation, to keep itself alive until better times. So while autophagy can protect the cell, it can also lead to its death. However, just how the choice between life and death is controlled has remained a mystery.

Autophagy is involved in numerous diseases, such as cancer, diabetes, obesity, cardiovascular disease, chronic inflammations, Alzheimer's and Parkinson's diseases, as well as in physiological adaptation to exercise, the development of the immune system and ageing.

Given the role of autophagy in human disease, all we have to do is select a disease model and test whether there's anything to be gained from influencing the new signal network that we've identified, says Dr Bertrand Joseph at Karolinska Institutet's Department of Oncology-Pathology, who headed the study.

To date, autophagy has mainly been considered a process in the cell's cytoplasm; the present study can completely overturn this view since the results indicate that events in the cell nucleus play an essential part in controlling the process once it has started. The DNA in the cell nucleus is packed around so-called histone proteins, on which different enzymes can attach acetyl groups. Such histone modification is a type of epigenetic regulation, which can influence gene expression without changing the DNA sequence. The modification of histones is a dynamic process, since some enzymes add the acetyl groups and other enzymes remove them.

The researchers studied how the outcome of the autophagy was affected by the acetylation of histone H4, and found that during the processes the acetylation of H4 decreased, which led to a reduction in the expression of autophagy-related genes. If this specific histone modification was blocked, the autophagic cells died.

Our findings open up avenues for influencing autophagy, says Dr Joseph.



Related Latest Research News
Drug activates virus against cancer
Bone loss associated with increased production of ROS
Sound preconditioning prevents ototoxic drug-induced hearing loss in mice
Crystal methamphetamine use by street youth increases risk of injecting drugs
Johns Hopkins-led study shows increased life expectancy among family caregivers
Moderate to severe psoriasis linked to chronic kidney disease, say experts
Licensing deal marks coming of age for University of Washington, University of Alabama-Birmingham
Simple blood or urine test to identify blinding disease
Physician job satisfaction driven by quality of patient care
Book explores undiscovered economics of everyday life

Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)