RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT
NASA flies to Greenland to extend polar science

Mar 30, 2009 - 4:00:00 AM
The P-3B will fly routes that take it directly under the path of ICESat, allowing the satellite and plane to measure the same features. Each has its benefits: the satellite provides regular, continental-scale coverage of Greenland and hard-to-reach regions like Antarctica, while the aircraft can make more detailed surveys of areas where scientists expect to see rapid change.

 
[RxPG] Imagine a piece of ice 1,000 miles long, 400 miles wide, and 2 miles thick in the center. That's the Greenland ice sheet. But that island-sized piece of ice is melting, so NASA researchers are flying to the Arctic this week to learn more about the nature of those changes.

Researchers led by William Krabill of NASA's Wallops Flight Facility in Wallops Island, Va., embark this week on a month-long airborne campaign to measure ice sheet and glacier thickness. They are using NASA's P-3B aircraft -- designed for heavy lifting and low-altitude flying -- outfitted with an array of science instruments. The plane is scheduled to transit March 30 from Virginia to Thule Air Base, Greenland. Weather permitting, the P-3B will make near-daily 8-hour flights over Greenland while pointing laser and radar instruments at targets until the mission's end on May 7.

Nearly every spring since 1991 Krabill has flown NASA research planes about 2,000 feet over Greenland to collect measurements of ice thickness. Now, as Krabill and colleagues return to update their measurements, their mission has become more extensive and more urgent because of global interest in the Arctic and the aging of a key ice-observing NASA satellite.

Measurements recorded by the radars and lasers will be compared and calibrated with measurements from the Ice, Cloud and land Elevation Satellite (ICESat), which makes regular, large-scale surface elevation measurements of polar ice sheets. Launched in January 2003, ICESat is already three years beyond its primary mission lifetime, so NASA scientists and engineers are making plans to bridge the anticipated gap until the launch of ICESat-II several years from now.

It's research like this on sea ice and the Greenland ice sheet that we use to understand how the polar regions are connected to global climate change and discover what changes are going on in atmospheric and ocean circulations, said Tom Wagner, cryosphere program manager at NASA Headquarters in Washington, D.C.

Krabill pioneered observing techniques that have created a continuous record of ice sheet changes. He first came to Wallops as a summer student in 1967, and eventually worked with a group of engineers on early radar and laser systems and on research uses for the Global Positioning System (GPS). Krabill is credited with being the first to combine the two technologies and put them on an airplane to measure changes in ice thickness.

I realized the capability of the instruments and saw a research need we could fulfill, Krabill said.

So far, flights led by Krabill have found evidence that, in general, ice along Greenland's coast is thinning while some areas inland are thickening. Still, the net change points to an overall loss. There's enough ice and snow in Greenland to raise sea level by about 7 meters (23 feet) if it were to all melt.

To determine long-term trends in the ice, scientists need sustained, highly accurate and well-calibrated measurements of thickness. Past and present observations combined with climate models are critical to understanding the future behavior of the Greenland ice sheet.

To achieve the thickness measurements, researchers use a combination of laser and radar instruments. Laser light from the Airborne Topographic Mapper is pulsed in circular scans on the ground, which reflect back to the aircraft and are converted into elevation maps of the ice surface. Meanwhile, the Pathfinder Airborne Radar Ice Sounder instrument, to be flown by researchers from the Johns Hopkins University Applied Physics Laboratory, emits radio signals that penetrate and see all the way through the ice, measuring the elevation of the land surface below. By combining elevation data for the top and base of the ice, and taking into account the aircraft's position using precise Global Positioning System (GPS) data, researchers can determine ice thickness at any given location.

A similar technique will be used to measure the thickness of a different target -- sea ice floating around Greenland and across the Arctic Ocean during a flight to Fairbanks, Alaska. Combining elevation data for the top of sea ice with sea level, researchers can use the known density difference between the sea and ice to estimate sea ice thickness.

The big fear is that a lot of the multiyear ice is gone, Wagner said. We hear stories about sea ice growing back. Well, it has grown back every winter, but it's really thin and may not last during the summer.

Krabill and colleagues will be joined on the flights by researchers from the University of Kansas, who are flying a snow radar that measures how snow builds up over time on ice, how that layer becomes compacted, and how it is changing.

The P-3B will fly routes that take it directly under the path of ICESat, allowing the satellite and plane to measure the same features. Each has its benefits: the satellite provides regular, continental-scale coverage of Greenland and hard-to-reach regions like Antarctica, while the aircraft can make more detailed surveys of areas where scientists expect to see rapid change.

We need to do both because they both work together, Wagner said. Comparing the data collected simultaneously by aircraft and satellite also will help researchers use future aircraft flights to bridge the anticipated gap in satellite coverage should the ICESat mission end before ICESat-II is launched.




Advertise in this space for $10 per month. Contact us today.


Related Latest Research News


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)