RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT
New devices to boost nematode research on neurons and drugs

Feb 5, 2008 - 5:00:00 AM
The artificial soil device, Lockery said, will help to study how brains generally process sensory information and for high-through-put screening of new drugs for their biological effects. Such research, he said, could lead to new treatments for some two billion people infected annually by parasitic nematodes, as well as new tools to reduce nematode-caused losses in world agriculture.

 
[RxPG] A pair of new thin, transparent devices, constructed with soft lithography, should boost research in which nematodes are studied to explore brain-behavior connections and to screen new pharmaceuticals for potential treatment of parasitic infections in humans, report 10 scientists at three institutions.

The tools -- an artificial soil device and a waveform sampler device, both of which can be held easily in a human hand -- are detailed in a paper appearing online ahead of regular publication by the Journal of Neurophysiology.

The devices take advantage of a microfluidic fabrication technique, which allows for the presence of channels, chambers or ports, for gas permeability and transparency and for using fluids to deliver stimuli with precision. The major improvement over previous tools is that these new ones are agarose-free, using micron-scale channels and pillars that mimic real soil particles.

The newly reported devices provide a near natural environment for soil-dwelling roundworms (Caenorhabditis elegans, or C. elegans) that measure barely a millimeter in length. The nematodes move normally, but slightly compressed so that highly sensitive microscopes can be used to monitor individual fluorescent-injected neurons in real time during experiments.

There is a commonality between these devices that is really going to help us understand how the nervous system works, said lead researcher Shawn Lockery, a professor of biology and member of the Institute of Neuroscience at the University of Oregon.

The artificial soil device consists of a hexagonal array of microscopic pillars sandwiched between a glass cover slip and a bulk material from which the pillars protrude, Lockery said. The worm wanders around in a one-centimeter square area as a river of mostly water flows through it. We can change the solution the nematode is exposed to in ways that are relevant to the research that is being conducted.

For instance, researchers can manipulate the levels of sodium chloride and oxygen in the water being injected into the devices.

As a proof of principle, researchers had to show that the behavior of the nematodes is essentially normal in the new devices, meaning that the worms crawl like they do on an agar surface. But nematodes don't live on exposed agar surfaces in real life, Lockery said. Instead, they are found within soil and easily collected in the wild in rotting fruit.

The beauty of this system is that it reproduces standard laboratory behavior, but it does so in a context that is probably more normal in terms of the worms' real-life environment, he said. You get forward and reverse locomotion, and the nematodes also do the omega turn, in which a worm's head bends around to touch the tail during forward locomotion, forming a shape like the Greek omega.

The waveform device features 18 different channels, with each divided into domains with unique amplitudes and wavelengths to manipulate how a nematode moves. Instead of using posts to mimic real soil, depressions or channels provide natural areas -- even some that don't occur in nature -- for the nematodes to crawl through. This ability to change the channels but still allow the worms to move about proved the principle in this case, Lockery said. What we found from this is that these animals are remarkably adaptable to a wide range of situations.

The artificial soil device, Lockery said, will help to study how brains generally process sensory information and for high-through-put screening of new drugs for their biological effects. Such research, he said, could lead to new treatments for some two billion people infected annually by parasitic nematodes, as well as new tools to reduce nematode-caused losses in world agriculture.

The waveform device could enhance research on brain-behavior connections. C-elegans have only 302 neurons, compared to 100 billion neurons in the human brain, Lockery said. At least 50 percent of the proteins in the nematode brain are identical to those in human brains. C. elegans is the only animal for which we have a complete anatomical reconstruction of the nervous system -- a complete wiring diagram of the brain. This greatly accelerates analyses of brain function in this organism, he said.




Advertise in this space for $10 per month. Contact us today.


Related Latest Research News


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)