RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: May 30, 2013 - 2:49:26 PM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT
New mouse model confirms how type 2 diabetes develops

May 3, 2013 - 4:00:00 AM
The goal is to design drugs and treatments which, if they can't cure the disease, can at least give the patient a better quality of life for several years, said Bilal Omar.

 
[RxPG] Researchers at Lund University in Sweden have developed a new mouse model that answers the question of what actually happens in the body when type 2 diabetes develops and how the body responds to drug treatment. Long-term studies of the middle-aged mouse model will be better than previous studies at confirming how drugs for type 2 diabetes function in humans.

The animal models for type 2 diabetes studies that have previously existed have not been optimal because they use young mice. Our idea was to create a model that resembles the situation in the development of type 2 diabetes in humans. We generally get the disease in middle age when we start to put on weight and live a more sedentary, and more stressful, life. Our new middle-aged mouse model has enabled us to study long-term physiological effects of the development and treatment of type 2 diabetes in a completely new way, said Bilal Omar, one of the researchers behind the study.

What the Lund researchers have done is to feed normal mice fatty food over a long period from the age of eight months, i.e. middle age, until the end of their natural lives at the age of two. The mice become overweight, and develop high blood sugar levels and reduced insulin release, as expected before the onset of type 2 diabetes.

Throughout the period we were able to study the process that leads to the development of type 2 diabetes with a lifestyle like that of people predisposed to the condition, said Bilal Omar.

In the study, the researchers could confirm that fatty foods lead to inflammation in the islets of Langerhans in the pancreas, which produce insulin. Researchers have seen inflammation in the islets in people with type 2 diabetes, but in Bilal Omar's view, it is only with the new mouse model that it can really be confirmed. Inflammation in these islets is an important risk factor for type 2 diabetes.

What was so interesting and exciting was that the mice that were treated with DPP-4 inhibitors, a class of drugs used for type 2 diabetes, did not develop inflammation and they maintained good insulin production. They were still obese, but had normal blood sugar, were otherwise healthy and lived longer, said Bilal Omar.

Researchers have worked for decades and on many fronts to understand the causes and course of diabetes. Models of different diseases are therefore an important tool for the development of new and better drugs, and a requirement to develop the best possible drugs is to understand what is happening on a physiological level.

The goal is to design drugs and treatments which, if they can't cure the disease, can at least give the patient a better quality of life for several years, said Bilal Omar.





Related Latest Research News
Drug activates virus against cancer
Bone loss associated with increased production of ROS
Sound preconditioning prevents ototoxic drug-induced hearing loss in mice
Crystal methamphetamine use by street youth increases risk of injecting drugs
Johns Hopkins-led study shows increased life expectancy among family caregivers
Moderate to severe psoriasis linked to chronic kidney disease, say experts
Licensing deal marks coming of age for University of Washington, University of Alabama-Birmingham
Simple blood or urine test to identify blinding disease
Physician job satisfaction driven by quality of patient care
Book explores undiscovered economics of everyday life

Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)