RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT
New reagents for genomic engineering of mouse models to understand human disease

Aug 19, 2009 - 4:00:00 AM
Scientists now report that a new recombinase, Dre, induces controlled genetic changes in mice. Dre works similarly to the currently popular recombinase Cre, with an important exception: Dre recognizes a distinct target sequence and only recombines DNA around its target sequence, even if the target sequence for Cre is present. The ability of the related proteins, Cre and Dre to distinguish their own target sequences indicates that Dre can be used in combination with Cre, and other recombinases, to produce more sophisticated mouse models. This should facilitate the analysis of complex gene interactions and how they function in disease.

 
[RxPG] The ability to specifically target and modify genes in the mouse allows researchers to use this small rodent to study how certain genes contribute to human disease. A common method used to make genetic changes in mice and cells is called site-specific recombination, where two DNA strands are exchanged. The two strands may contain very different sequences, but are designated at their ends by specific target sequences that are not commonly found elsewhere in the genome. A protein, called a recombinase, cuts the DNA at its target sites and rearranges it. Scientists use this technique to exchange a naturally occurring DNA sequence for an altered or deleted gene to gain insight into the gene's normal function or how it contributes to disease.

Currently there are a few systems available to create genetic mutations in mice, including the recombinases FLP and Cre. These proteins are very efficient genetic modifiers and specifically target their appropriate sequences. They can also be turned on or off at precise times, or within specific tissues, to make carefully reegulated genetic changes. However, the small number of available methods that can be used together to mutate genes limits the complexity of the modifications that can be produced. For example, it would be informative to independently regulate the temporal and tissue-specific expression of genes with overlapping functions to understand their individual and combined effects.

Scientists now report that a new recombinase, Dre, induces controlled genetic changes in mice. Dre works similarly to the currently popular recombinase Cre, with an important exception: Dre recognizes a distinct target sequence and only recombines DNA around its target sequence, even if the target sequence for Cre is present. The ability of the related proteins, Cre and Dre to distinguish their own target sequences indicates that Dre can be used in combination with Cre, and other recombinases, to produce more sophisticated mouse models. This should facilitate the analysis of complex gene interactions and how they function in disease.

This technological advance also highlights the progress that might be made through open reagent sharing within the scientific community. The discovery of Dre recombinase was originally reported by Sauer and McDermott at the Stowers Institute for Medical Research. The Institute holds an intellectual patent for the system that allows it to be shared openly for non-commercial purposes and evaluates requests on a case-by-case basis for its use by for-profit institutions. Thus, the authors of the new DMM report do not have any proprietary claims to the system that they used to create this valuable mouse model. This is the first of a series of Resource Articles that will appear in




Advertise in this space for $10 per month. Contact us today.


Related Latest Research News


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)