RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT
Origin of a mysterious physical force discovered

Mar 1, 2005 - 5:56:00 PM
Fully understanding the properties of this force that occurs when molecules surrounded by water adhere to each other is also useful in the chemical industry, particularly when involving mechanisms in which colloidal suspensions must be stabilised, such as the mechanisms used to produce paints, cosmetics and food products such as yoghurt and mayonnaise.

 
[RxPG] Ever since the 1970s, scientists have been trying to establish the cause of a repulsive force occurring between different electrostatically charged molecules, such as DNA and other biomolecules, when they are very close to each other in aqueous media. This force became know as hydration force.

Jordi Faraudo, a researcher for the Department of Physics at the Universitat Autònoma de Barcelona, and Fernando Bresme of the Department of Chemistry at Imperial College London have studied this mysterious force in detail and have discovered where its origins lie.

In the same way that a flag flutters in the direction the wind is blowing, at a microscopic level water molecules are gently attracted towards the direction in which an electric field is pointing. However, when the water is in contact with surfaces that create small electric fields, such as chemical compounds like those found in many detergents, this is no longer the case: the water molecules have a remarkable capacity to organise themselves into complex structures that are strongly orientated in such a way as to cancel out the electric field, and on some occasions, to reverse it. This abnormal behaviour was discovered by the same researchers and published in Physical Review Letters in April 2004.

The scientists have now discovered that this strange property is responsible for the hydration force that acts when water is surrounded by certain types of electrostatically charged molecules, such as DNA and some biological compounds, and when thin films form in detergents. The discovery has been published in today's edition of Physical Review Letters.

Water is the solvent in which most physical, chemical and biological processes take place. Therefore, it is essential to understand the nature of interactions between molecules dissolved in water in order to understand many of these processes. Two of the most important of these processes are the adherence of substances to cell membranes and the withdrawal of proteins. Both of these are fundamental in biomedical research, since a substantial part of the process of designing new drugs is based on understanding how substances penetrate cell membranes to enter cells. These drugs are often proteins designed to prevent or strengthen the action of other substances. In these cases, accurately identifying the protein folding is essential, since the form these proteins take on when they fold influences how effectively they are able to act.

Fully understanding the properties of this force that occurs when molecules surrounded by water adhere to each other is also useful in the chemical industry, particularly when involving mechanisms in which colloidal suspensions must be stabilised, such as the mechanisms used to produce paints, cosmetics and food products such as yoghurt and mayonnaise.



Publication: The discovery has been published in today's edition of Physical Review Letters.
On the web: Universitat Autonoma de Barcelona  

Advertise in this space for $10 per month. Contact us today.


Related Latest Research News


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)