RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT
Promising treatment target found in Hodgkin lymphoma

Jul 30, 2007 - 4:00:00 AM
Likely what's happening here is that the tumor cells essentially hijack a normal regulatory program and use it to avoid being knocked off by the immune response, explains Shipp, who is also a professor of medicine at Harvard Medical School. These observations provide an important explanation for why you have this ineffective immune response in Hodgkin lymphoma.

 
[RxPG] BOSTON--Dana-Farber Cancer Institute scientists have identified a protein that prevents the body's immune system from recognizing and attacking Hodgkin lymphoma cells. Based on this finding, the researchers are now investigating targeted therapies to disable this molecular bodyguard and boost a patient's ability to fight the blood cancer.

If the strategy proves successful, patients might escape some of the long-term complications -- like heart damage and the threat of a second cancer -- caused by standard treatments that include radiation, said Margaret Shipp, MD, of Dana-Farber, who headed the study. A report will be posted online by the Proceedings of the National Academy of Sciences on July 30 and will appear in an upcoming print issue of the journal.

We're excited about this treatment lead, said Shipp, a medical oncologist. We are currently generating antibodies that can neutralize the 'bodyguard' protein, and we’d like to fast-track this experimental therapy into clinical trials.

Nearly 8,200 people in the United States -- the great majority of them young adults -- will be diagnosed with Hodgkin lymphoma in 2007, according to the American Cancer Society, with an estimated 1,070 deaths. The cancer begins in the lymph nodes and channels that distribute infection-fighting white blood cells around the body. Its symptoms can include swollen glands in the neck, night sweats and fatigue.

The biological trademark of Hodgkin lymphoma is a type of giant, mutant white blood cell called the Reed-Sternberg cell that is found in the lymph node tumors. While most solid cancers consist almost entirely of tumor cells, says Shipp, Hodgkin tumors, which can reach the size of a basketball, contain only about 5 percent cancerous Reed-Sternberg cells; the rest are different types of immune cells recruited to fight the tumor, but they are ineffective.

You would expect with all these host immune cells attracted to the area of the tumor cells that they would mount a great antitumor response, Shipp says. But that's not the case. There are a lot of immune cells, but they're the wrong kind.

The immune army includes different types of T cells, such as T helper 1 (Th1) cells designed to recognize and kill foreign infectious agents and sometimes tumors, T helper 2 (Th2) cells, which normally control allergic responses, and T regulatory (Treg) cells that suppress other T-cell types and shut down an immune response when the job is done. The Hodgkin tumors are overloaded with Th2 and Treg cells that act as bodyguards for the cancer by weakening the Th1 immune response against it.

Przemyslaw Juszczynski, MD, PhD, Jing Ouyang, PhD, and colleagues from the Shipp laboratory, together with collaborators from Brigham and Women's Hospital, the Broad Institute and the University of Buenos Aires, hunted for the source of the cancer cells' protection. Using gene microarray chips, the scientists looked for genes that were active in Reed-Sternberg cells but not in cells of another non-Hodgkin B-cell lymphoma.

The comparison revealed that a gene called Gal1 was up to 30 times more active in the Reed-Sternberg cells, causing them to secrete large quantities of a protein -- Gal1 or Galectin 1 -- that turns down the Th1 immune response. The Shipp team then defined the mechanism for Gal1 overexpression in Hodgkin lymphoma. Next, they demonstrated that Th1 immune cells underwent apoptosis, or cell death, when treated with Gal1, leaving increased numbers of Th2 cells and the suppressive Treg cells. Using a gene-silencing technique, RNA interference or RNAi, they then turned off the Gal1 gene in Hodgkin Reed-Sternberg cells and showed that it blocked the death of infiltrating normal Th1 cells, making them an equal force to the Th2 cells.

Likely what's happening here is that the tumor cells essentially hijack a normal regulatory program and use it to avoid being knocked off by the immune response, explains Shipp, who is also a professor of medicine at Harvard Medical School. These observations provide an important explanation for why you have this ineffective immune response in Hodgkin lymphoma.

She adds that this bodyguard strategy may not be limited to Hodgkin lymphoma. One of the collaborating authors, Gabriel Rabinovich, PhD, of the University of Buenos Aires, has blocked Gal1 in mice with a form of the deadly skin cancer melanoma, and the animal's immune system succeeded in eliminating the cancer, Shipp says. We think it's very possible that this strategy will be applicable to other types of cancer.




Advertise in this space for $10 per month. Contact us today.


Related Latest Research News


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)