RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT
Scientists search for brain center responsible for tinnitus

Oct 5, 2007 - 4:00:00 AM
One of the major goals of the project is to try to identify the neural signature of tinnitus -- what aberrant pattern of neural activity in the auditory cortex is associated with the onset of tinnitus. In another study phase, the researchers will assess neural activity throughout the entire brain using a radioactive tracer, fluorodeoxyglucose (FDG), which is taken up preferentially into regions of the brain that are highly active metabolically.

 
[RxPG] BUFFALO, N.Y. -- For the more than 50 million Americans who experience the phantom sounds of tinnitus -- ringing in the ears that can range from annoying to debilitating -- certain well-trained rats may be their best hope for finding relief.

Researchers at the University at Buffalo have studied the condition for more than 10 years and have developed these animal models, which can “tell” the researchers if they are experiencing tinnitus.

These scientists now have received a $2.9 million five-year grant from the National Institutes of Health to study the brain signals responsible for creating the phantom sounds, using the animal models, and to test potential therapies to quiet the noise.

The research will take place at the Center for Hearing and Deafness, part of the Department of Communicative Disorders and Sciences in the university’s College of Arts and Sciences. Richard Salvi, Ph.D., director of the center, is principal investigator. Scientists from UB’s Department of Nuclear Medicine and from Roswell Park Cancer Institute in Buffalo are major collaborators on portions of the project.

Tinnitus is caused by continued exposure to loud noise, by normal aging and, to a much lesser extent, as a side effect of taking certain anti-cancer drugs. It is a major concern in the military: 30 percent of Iraq and Afghanistan combat veterans suffer from the condition.

“For many years it was thought that the buzzing or ringing sounds heard by people with tinnitus originated in the ear,” Salvi said. “But by using positron emission tomography [known as PET scanning] to view the brain activity of people with tinnitus at UB, we’ve been able to show that these phantom auditory sensations originated somewhere in brain, not in the ear. That changed the whole research approach.”

Salvi and colleagues discovered that when the brain’s auditory cortex begins receiving diminished neural signals from the cochlea, the hearing organ, due to injury or age, the auditory cortex “turns up the volume,” increasing weak neural signals from the cochlea. Increasing the volume of these weak signals may be experienced as the buzzing, ringing, or hissing characteristic of tinnitus. Currently there is no drug or treatment that can abolish these phantom sounds.

Over the past decade, Salvi’s team has developed the animal models, allowing the researchers to explore the neurophysiological and biological mechanisms associated with tinnitus, the major focus of this new study. Ed Lobarinas, Ph.D., and Wei Sun, Ph.D., in the Department of Communicative Disorders and Sciences, developed the models.

One of the major goals of the project is to try to identify the neural signature of tinnitus -- what aberrant pattern of neural activity in the auditory cortex is associated with the onset of tinnitus. In another study phase, the researchers will assess neural activity throughout the entire brain using a radioactive tracer, fluorodeoxyglucose (FDG), which is taken up preferentially into regions of the brain that are highly active metabolically.

The third phase of the study involves the use of potential therapeutic drugs to suppress salicylate- or noise-induced tinnitus. In early studies, the researchers have been able to modulate some ion channels with one unique compound, and have been able to completely eliminate aspirin-induced tinnitus using the highest doses of the compound. This phase involves collaboration with scientists at NeuroSearch Pharmaceuticals in Denmark.




Advertise in this space for $10 per month. Contact us today.


Related Latest Research News
Drug activates virus against cancer
Bone loss associated with increased production of ROS
Sound preconditioning prevents ototoxic drug-induced hearing loss in mice
Crystal methamphetamine use by street youth increases risk of injecting drugs
Johns Hopkins-led study shows increased life expectancy among family caregivers
Moderate to severe psoriasis linked to chronic kidney disease, say experts
Licensing deal marks coming of age for University of Washington, University of Alabama-Birmingham
Simple blood or urine test to identify blinding disease
Physician job satisfaction driven by quality of patient care
Book explores undiscovered economics of everyday life

Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)