RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT
Scientists using laser light to detect potential diseases via breath samples, says new study

Feb 18, 2008 - 5:00:00 AM
Laser light can detect and distinguish specific molecules because different molecules vibrate and rotate at certain distinct resonant frequencies that depend on their composition and structure, he said. He likened the concept to different radio stations broadcasting on separate radio frequencies.

 
[RxPG] By blasting a person's breath with laser light, scientists from the National Institute of Standards and Technology and the University of Colorado at Boulder have shown that they can detect molecules that may be markers for diseases like asthma or cancer.

While the new technique has yet to be tested in clinical trials, it may someday allow doctors to screen people for certain diseases simply by sampling their breath, according to the research team from JILA, a joint institute of NIST and CU-Boulder. This technique can give a broad picture of many different molecules in the breath all at once, said Jun Ye, a fellow of JILA and NIST who led the research.

CU-Boulder graduate research assistant Michael Thorpe, Ye, CU-Boulder doctoral student Matthew Kirchner and former CU graduate student David Balslev-Clausen describe the research in a paper that appeared in the Feb. 18 online edition of Optics Express, the free, open-access journal published by the Optical Society of America. Known as optical frequency comb spectroscopy, the technique is powerful enough to sort through all the molecules in human breath and sensitive enough to distinguish rare molecules that may be biomarkers for specific diseases, said Ye.

When breathing, people inhale a complex mixture of gases, including nitrogen, oxygen, carbon dioxide, water vapor and traces of other gases like carbon monoxide, nitrous oxide and methane, said Ye, an adjoint professor of physics at CU-Boulder. Exhaled breath contains less oxygen, more carbon dioxide and a rich collection of more than a thousand types of other molecules, most of which are present only in trace amounts.

Just as bad breath can indicate dental problems, excess methylamine may signal liver and kidney disease, ammonia may be a sign of renal failure, elevated acetone levels can indicate diabetes and nitric oxide levels can be used to diagnose asthma, Ye said.

When many breath molecules are detected simultaneously, highly reliable, disease-specific information can be collected, said Ye. Asthma, for example, can be detected much more reliably when carbonyl sulfide, carbon monoxide and hydrogen peroxide are all detected simultaneously with nitric oxide.

While current breath analysis using biomarkers is a noninvasive and low-cost procedure, approaches are limited because the equipment is either not selective enough to detect a diverse set of rare biomarkers or not sensitive enough to detect particular trace amounts of molecules exhaled in human breath, Ye said.

The new technique has the potential to be low-cost, rapid and reliable, and is sensitive enough to detect a much wider array of biomarkers all at once for a diverse set of diseases, he said.

The optical frequency comb is a very precise laser for measuring different colors, or frequencies, of light, said Ye. Each comb line, or tooth, is tuned to a distinct frequency of a particular molecule's vibration or rotation, and the entire comb covers a broad spectral range -- much like a rainbow of colors -- that can identify thousands of different molecules.

Laser light can detect and distinguish specific molecules because different molecules vibrate and rotate at certain distinct resonant frequencies that depend on their composition and structure, he said. He likened the concept to different radio stations broadcasting on separate radio frequencies.






Advertise in this space for $10 per month. Contact us today.


Related Latest Research News


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)