RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT
Special horseshoes measure acceleration in horses

Jul 6, 2008 - 4:00:00 AM
Rehabilitation after equine joint and muscle injuries, including those of the back, shoulders and legs, now often involves 'aquatraining', whereby horses move in water-filled treadmills. Due to buoyancy, this treatment is currently thought to reduce weight-bearing forces, which can otherwise have detrimental effects on joints, but to date there has been a virtual absence of studies into the magnitude of these benefits. Professor van Leeuwen's team has used special horseshoes to measure accelerations of horses undergoing aquatraining, as well as walking normally, which provide a good indication of the impact forces involved. Our results, based on data from seven horses, show the accelerations are significantly lower during 'aquatic walking', he asserts. We will be carrying out further experiments to confirm these results, but at this stage, it appears that aquatraining may indeed be beneficial for rehabilitation after joint injury.

 
[RxPG] The most frequent injuries that horses suffer are derived from pressure exerted by riders, and knowing which forces are involved when horses move can prove highly informative when considering treatment for such injuries. A team of scientists from Wageningen University, led by Professor Johan van Leeuwen, has carried out studies both into the advantages of different rider techniques in reducing injury risk, and into the benefits of a method of equine rehabilitation. By using computer modelling and specialist horseshoes to measure acceleration, these investigations suggest that aqua-training rehabilitation is beneficial due to lower impact accelerations. However, rising trot may not be as advantageous as previously thought. Results will be presented on Monday 7th July at the Society for Experimental Biology's Annual Meeting in Marseille [Session A3].

Rehabilitation after equine joint and muscle injuries, including those of the back, shoulders and legs, now often involves 'aquatraining', whereby horses move in water-filled treadmills. Due to buoyancy, this treatment is currently thought to reduce weight-bearing forces, which can otherwise have detrimental effects on joints, but to date there has been a virtual absence of studies into the magnitude of these benefits. Professor van Leeuwen's team has used special horseshoes to measure accelerations of horses undergoing aquatraining, as well as walking normally, which provide a good indication of the impact forces involved. Our results, based on data from seven horses, show the accelerations are significantly lower during 'aquatic walking', he asserts. We will be carrying out further experiments to confirm these results, but at this stage, it appears that aquatraining may indeed be beneficial for rehabilitation after joint injury.

Professor van Leeuwen and his colleagues have also used specialised force gauges to measure the strain placed on the backs of horses through the saddle and stirrups. These measurements have been combined with the output of computer models to provide insight into the mechanisms that a rider can use to respond to the movements of a horse, and to prevent injury. We have given particular attention to the comparison of sitting and rising trot, as it is broadly accepted in the equestrian world that rising trot imposes less loading on the back of the horse, Professor van Leeuwen explains. However, our results have not been able to confirm the belief that rising trot is mechanically less demanding for the horse. Looking at back extension, which is most often related to back injuries, we found that the extension of the back is similar in rising and sitting trot.




Advertise in this space for $10 per month. Contact us today.


Related Latest Research News


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)