RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT
Unique role for blood formation gene identified

Sep 12, 2007 - 4:00:00 AM
Previous studies indicated that MLL is critical for embryonic blood stem cell development, but its role for the adult system was unknown. In their mouse model, the researchers found that bone marrow failure occurred as early as 14 days after they induced the experimental loss of MLL, demonstrating the crucial role of MLL as �necessary for both the development and maintenance of the body�s blood supply,� according to the researchers.

 
[RxPG] Hanover, NH--All blood cell production in adults depends on the steady work of a vital gene that if lost results in early bone marrow failure, Dartmouth Medical School cancer geneticists have found. Their research reveals an unexpected role for the gene in sustaining the adult blood-forming system, and opens novel strategies for targeting the gene, which is often involved in a type of childhood leukemia.

�We have identified a new pathway that is essential for blood stem cell turnover,� said team leader Dr. Patricia Ernst, assistant professor of genetics and member of the Norris Cotton Cancer Center. The pathway could be exploited for treating a rare but aggressive infant leukemia, she added. These findings were reported in the September issue of Cell Stem Cell.

The investigators created a mouse model to track the function of a gene called MLL, which stands for Mixed Lineage Leukemia. The gene acts in bone marrow stem cells and controls key aspects of their growth to generate all the mature blood cells. If disrupted, it cannot work properly, and leukemia can ensue.

�MLL is the most commonly affected gene in childhood leukemia in children under a year of age; this particular type of leukemia has one of the worst success rates with the existing cancer therapies,� said Ernst, who first helped clarify the role of MLL as a postdoctoral fellow at Harvard.

Many childhood leukemias result from mutations called translocations, where gene pieces on chromosomes accidentally relocate and misalign. In infant leukemia, the chromosome containing the MLL gene breaks within MLL and ends up fused to a different gene. MLL fusion genes likely co-opt normal MLL functions in blood cells, leading to the overproduction of white cells and leukemia.

Previous studies indicated that MLL is critical for embryonic blood stem cell development, but its role for the adult system was unknown. In their mouse model, the researchers found that bone marrow failure occurred as early as 14 days after they induced the experimental loss of MLL, demonstrating the crucial role of MLL as �necessary for both the development and maintenance of the body�s blood supply,� according to the researchers.

�We have shown that the adult blood-forming system depends on the continuous actions of MLL,� Ernst said. Moreover, with the mouse model the scientists established to define normal MLL functions, they can begin exploring how to craft new anti-cancer treatments, she pointed out. �We and other groups can start designing targeted therapies that inhibit cancerous forms of MLL that occur in childhood leukemia and do not affect normal MLL function, which, based on our studies in mice, would be fatal for the patient.�




Publication: Cell Stem Cell

Funding information and declaration of competing interests: National Institutes of Health, Sydney Kimmel Foundation, V Foundation, American Cancer Society

Advertise in this space for $10 per month. Contact us today.


Related Latest Research News


Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)