RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
 Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Research Article
Latest Research Channel

subscribe to Latest Research newsletter
Latest Research

   EMAIL   |   PRINT
Using stem cells to mend damaged hips

Mar 23, 2010 - 4:00:00 AM
This funding will allow the groups to build on initial studies that show that degradable polymer scaffolds prepared using supercritical carbon dioxide technology can have a dramatic effect on surgical procedures, such as inserting a hip implant in revision hip surgery.

 
[RxPG] Bone stem cells could in future be used instead of bone from donors as part of an innovative new hip replacement treatment, according to scientists at the University of Southampton.

A team from the University's School of Medicine believe that introducing a patient's own skeletal stem cells into the hip joint during bone grafting would encourage more successful regrowth and repair.

The grafting technique is used to repair the thigh bone and joint during replacement (known as 'revision') hip replacement therapy, a procedure in which surgeons introduce donor bone to the damaged area to provide support for the new hip stem.

In this collaborative study between the University of Southampton and The University of Nottingham, researchers will use adult stem cells from bone marrow in combination with an innovative impaction process and polymer scaffolds.

In a two-year study, funded by the Medical Research Council (MRC), researchers aim to improve the outcomes of this high impact procedure.

Surgeons currently use bone from donors during bone grafting, so introducing a patient's own stem cells to create a living cell or material composite would be a totally new approach, comments Professor Richard Oreffo, an expert in musculoskeletal science at the University of Southampton, who is leading the project.

This is very much the beginning of a project to investigate the potential for this new technique, but our preliminary work suggests this may have significant therapeutic implications.

When a hip joint is damaged, part of the thigh bone or femur, including the ball, can be removed and a new, artificial joint fixed to the remaining thigh bone. Revision hip replacement occurs when that artificial joint needs to be changed.

Professor Oreffo will introduce the stem cells to the hip joint using a scaffold, or support structure, which is designed to protect them, and a new impaction process. The polymer scaffolds will be developed by Professors Steve Howdle and Kevin Shakesheff, experts in chemistry and tissue engineering at the University of Nottingham.

Professor Howdle explains: Building upon strong collaborations with tissue engineering experts, this new grant will allow researchers at Nottingham to take their materials nearer to the clinic.

This could have great benefits for patients, and also offer a significant cost saving for healthcare authorities; but first we need to verify and build upon our preliminary data.

A major part of the work at Nottingham will involve scaling up the supercritical fluid processing apparatus to create larger and more uniform batches of polymer scaffolds for testing.

Dr Chris Watkins, MRC's Translation Theme Leader, says: Resilience, repair and replacement is a priority research area in the MRC's strategic plan, 'Research Changes Lives'. This study highlights how a regenerative approach can offer real hope in addressing a significant problem for an ageing population.

This funding will allow the groups to build on initial studies that show that degradable polymer scaffolds prepared using supercritical carbon dioxide technology can have a dramatic effect on surgical procedures, such as inserting a hip implant in revision hip surgery.

The provisional studies carried out in Southampton show that the polymers can aid bone formation through the creation of a living cell/material composite and aid attachment of the hip implant.




Advertise in this space for $10 per month. Contact us today.


Related Latest Research News
Drug activates virus against cancer
Bone loss associated with increased production of ROS
Sound preconditioning prevents ototoxic drug-induced hearing loss in mice
Crystal methamphetamine use by street youth increases risk of injecting drugs
Johns Hopkins-led study shows increased life expectancy among family caregivers
Moderate to severe psoriasis linked to chronic kidney disease, say experts
Licensing deal marks coming of age for University of Washington, University of Alabama-Birmingham
Simple blood or urine test to identify blinding disease
Physician job satisfaction driven by quality of patient care
Book explores undiscovered economics of everyday life

Subscribe to Latest Research Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)