RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
  Stem Cell Research
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Research Article
Stem Cell Research Channel

subscribe to Stem Cell Research newsletter
Latest Research : Embryology : Stem Cell Research

   EMAIL   |   PRINT
Human Brain Cells Grown Inside Mouse Skull

Dec 13, 2005 - 3:29:00 PM , Reviewed by: Himanshu Tyagi
“It is truly amazing that these human stem cells, although they are very immature, can still develop surface markers to respond to different cues in their environment and can fit right in with their mouse neighbors"

 
[RxPG] Previous studies have shown that undifferentiated human embryonic stem cells (hESC) can survive in the brains of laboratory rats with Parkinson’s disease. But until now it was unclear whether hESCs can become fully functional members of the host animal’s neuronal architecture - a basic necessity if stem cells are ever to be used in medical treatments replenishing missing or damaged neurons in human patients with neurodegenerative diseases such as Parkinson's or Alzheimer’s disease.

Now, research at the Salk Institute for Biological Studies indicates for the first time that hESCs mature into fully functional adult brain cells and integrate into the existing nervous system when these human cells are injected in the developing brains of two-week-old mouse embryos.

The Salk researchers led by Fred H. Gage, Ph.D, professor and co-head of the Laboratory of Genetics at the Salk Institute, published their finding in this week’s Proceedings of the National Academy of Science.

“Besides its therapeutic potential, our finding also opens up the possibility to study human disease in a new context,” says first author Alysson R. Muotri, Ph.D. “We can ask if neurodegeneration is the function of an individual diseased cell or if it is caused by the local environment in the brain.”

Far less than 0.1 percent of their brain cells were of human origin, and those few had taken on the size and shape of their neighbors. “This illustrate that injecting human stem cells into mouse brains doesn’t restructure the brain,” explains Gage.


At least in theory, hESCs can grow indefinitely in the lab as unspecialized cells and can be coaxed to differentiate into various cell types.

“This assay will be very valuable to determine whether any given human stem cell lines still have the capacity to form fully functional neurons,” says Gage, explaining that scientists currently do not know whether stem cells that have been kept in culture outside the body for extended periods of time have lost the potential to become a neuron or not.

He also emphasizes that “this procedure will also allow other laboratories and drug companies to test the toxicity of new compounds and assess their effects on human brain cells, not just in a Petri dish, but in the context of a functional brain.”

In the past, hESC injected into adult mice often formed tumors or were rejected by the mouse immune system. Hoping to circumvent these problems, Gage and his team opted for injecting hESCs into the developing brains of embryonic mice.

The green glowing hESCs differentiated into different types of neurons and supporting glia cells, migrated throughout the brain and settled in different regions without forming tumors or being rejected by the mouse’s immune system.

“When we characterized these cells two months later, we found that had the morphology, shape and characteristics of mouse cells,” says Gage.

Other authors who contributed to the work include co-first author Kinichi Nakashima, formerly at the Salk and now at Nara Institute of Science and Technology in Japan, and post-doctoral researchers Nicolas Toni and Vladislav M. Sandler. In accordance with guidelines and the Salk’s internal Human Stem Cell Research Guidelines, the mice used in these experiments were not allowed to breed.



Publication: Proceedings of the National Academy of Science.
On the web: Salk Institute for BiologicalStudies 

Advertise in this space for $10 per month. Contact us today.


Related Stem Cell Research News
Researchers construct erectile tissue in rabbits
Early stage sperm cells created in laboratory
Neural stem cells derived from human embryonic stem cells carry abnormal gene expression
Neurons grown from embryonic stem cells restore function in paralyzed rats
New stem-cell findings can help the body to cure itself
Putting avian transgenics on a par with transgenic mice
Harvard to Create Human Embryonic Stem Cell Lines
Stem Cell Study for Patients with Heart Attack Damage Seeks to Regenerate Heart Muscle
Stem cells - An alternative to skin grafting?
Bone morphogenetic protein 6 (BMP-6) factor stimulates cartilage growth from stem cells

Subscribe to Stem Cell Research Newsletter

Enter your email address:


 Additional information about the news article
The research was funded by the Mathers Foundation and the Lookout Fund. The Salk Institute for Biological Studies in La Jolla, California, is an independent nonprofit organization dedicated to fundamental discoveries in the life sciences, the improvement of human health and the training of future generations of researchers. Jonas Salk, M.D., whose polio vaccine all but eradicated the crippling disease poliomyelitis in 1955, opened the Institute in 1965 with a gift of land from the City of San Diego and the financial support of the March of Dimes. For more information: www.salk.edu.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)