XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
  Anaemia
  Hemophilia
  Polycythemia
  Thalassemias
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate
Search

Last Updated: Nov 18, 2006 - 1:55:25 PM

Thalassemias Channel
subscribe to Thalassemias newsletter

Latest Research : Haematology : Thalassemias

   DISCUSS   |   EMAIL   |   PRINT
MBD2 Protein mediates silencing of the fetal gamma-globin gene through DNA methylation
Apr 11, 2006 - 10:42:00 PM, Reviewed by: Dr. Priya Saxena

�The gamma-globin genes normally become silent in adult hemoglobin expressing red blood cells. If we can find a specific and safe mechanism to reactivate the gamma-globin gene, we may be able to overcome the underlying molecular defect in sickle-cell anemia and beta-thalassemia,�

 
Virginia Commonwealth University Massey Cancer Center researchers have identified the role of a protein in hemoglobin gene silencing that may one day be a potential target for the treatment of genetic blood disorders like sickle-cell anemia and beta-thalassemia on the molecular level.

In the April issue of the journal Proceedings of the National Academy of Sciences, researchers reported for the first time that the protein, MBD2, mediates silencing of the fetal gamma-globin gene through DNA methylation, a process that chemically modifies DNA. Researchers used a transgenic mouse model containing the human hemoglobin gene locus to show that MBD2 interprets the DNA methylation �signal� throughout the genome, which determined how the pattern of methylation effected the expression of specific genes.

�Understanding how these epigenetic switches turn specific genes on and off, and identifying the important proteins involved, could lead to more targeted ways to reactivate genes and determine if there is a therapeutic benefit for particular diseases,� said Gordon D. Ginder, M.D., director of the VCU Massey Cancer Center and lead author of the study.

Epigenetics refers to the study of the modifications of DNA and the surrounding proteins found in chromosomes that turn genes on and off and that can be passed on after cell division in an individual. Traditionally, researchers have focused their attention on changes to the DNA base code as being responsible for altered gene expression in disease.

Previous clinical studies have shown that increased gamma-globin gene expression has a positive effect in those with sickle-cell anemia or beta-thalassemia. �The gamma-globin genes normally become silent in adult hemoglobin expressing red blood cells. If we can find a specific and safe mechanism to reactivate the gamma-globin gene, we may be able to overcome the underlying molecular defect in sickle-cell anemia and beta-thalassemia,� Ginder said.

Gene silencing is important for the differentiation of many different types of cells to take place. In humans, there are five beta-type globin genes clustered on chromosome 11 in the order in which they are �turned on,� or expressed, during development. These genes include the embryonic epsilon-globin gene, two gamma-globin genes and the adult delta- and beta-globin genes. During fetal development, the embryonic epsilon-globin gene is active first, followed by the gamma-globin genes, and finally the major adult form, beta-globin, becomes the dominant expressed gene following birth.

According to Ginder, regulation of many genes and other molecular processes require DNA methylation. He said that DNA methylation is associated with the silencing of many types of genes, including tumor suppressor genes found in cancer cells. Scientists now know that DNA methylation plays a significant role in the development and progression of several forms of cancer.

Currently, the only therapeutic approach to relieving methylation-mediated gene silencing that has been tested in humans is through blocking the methylating enzymes non-specifically throughout the cell. Although this approach may have the desired effect on the specific gene or genes involved, it can also have an undesirable effect by turning on the wrong genes, he said.

�The more targeted the approach the better, because there is less likelihood of producing any unintended negative side-effects. For example, there is some specificity of how some proteins, such as MBD2, act to silence only certain sets of methylated genes,� Ginder said.

Mutations of hemoglobin genes play a role in genetic blood disorders such as sickle-cell anemia and beta-thalassemia.
 

- April issue of the journal Proceedings of the National Academy of Sciences
 

www.massey.vcu.edu

 
Subscribe to Thalassemias Newsletter
E-mail Address:

 

This work was supported by a grant from the National Institutes of Health.

Ginder collaborated with VCU Massey Cancer Center researchers Jeremy W. Rupon, B.S., a combined M.D./Ph.D. student; Shou Zhen Wang, M.S., a research associate; and Joyce Lloyd, Ph.D., an associate professor of human genetics. Also Karin Gaensler, Ph.D., from the University of California collaborated on this work.

About the VCU Massey Cancer Center: The VCU Massey Cancer Center, one of 61 National Cancer Institute-designated research institutions, is VCU�s focal point for basic and clinical cancer research, education, prevention and cancer health care. Since 1975, Massey has served as an internationally recognized center of excellence. Its 175 doctors and researchers are dedicated to improving the quality of human life by developing effective means to prevent, control and ultimately to cure cancer. Visit Massey online at www.massey.vcu.edu.


Related Thalassemias News
Alpha-Thalassemia and Protection from Malaria
MBD2 Protein mediates silencing of the fetal gamma-globin gene through DNA methylation


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us