RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
  CTVS
  Plastic Surgery
  Transplantation
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Transplantation Channel

subscribe to Transplantation newsletter
Latest Research : Surgery : Transplantation

   EMAIL   |   PRINT
Costimulation blockade: Will this lead to rejection-free transplants?

Sep 8, 2006 - 5:20:00 PM , Reviewed by: Rashmi Yadav

"The holy grail of transplantation research is to find a way to produce permanent tolerance without the need for any immunosuppressive medication."

 
[RxPG] Years ago, the idea of attaching a donor limb onto a patient's body would have been the stuff of science fiction. But to date about two-dozen people around the world have received hand transplants. Thomas Tung, M.D., conducts research within this relatively unorthodox realm of surgery, investigating therapies that could potentially allow the body to accept donor tissue without the use of immunosuppressive medication.

A Washington University plastic and reconstructive surgeon at Barnes-Jewish Hospital, Tung has reattached patients' own hands, but he has never performed a hand transplant - he feels the health risks of immunosuppressive drugs are too high to warrant the surgery. But with his research, he is working toward the day when reconstructive surgery can make use of donor tissues without the danger of complications from anti-rejection medication or the risk of tissue rejection.

"Once we figure this out, it's going to open up a new whole field of reconstructive surgery," says Tung, assistant professor of surgery. "It will allow surgeons to replace not just injured hands, but lips, noses, ears, scalp and other specialized tissues anywhere on the body."

To reach this goal, Tung has been researching transplantation of hindlimbs to mice from unrelated donors - but here's the twist - without giving the mice immunosuppressive drugs. At this time, Tung is the only researcher in the United States investigating limb transplantation with this protocol, which uses proteins called costimulation-blocking antibodies.

With current treatment methods, all transplantation patients take medications that reduce the function of their immune systems so their bodies don't reject the foreign tissue. But long-term use of immunosuppressive medication raises the risk of infection and cancer because the weakened immune system is unable to ward off these threats. Furthermore, immune suppression therapy eventually fails, and transplanted organs undergo rejection an average of 10 years after surgery.

"The holy grail of transplantation research is to find a way to produce permanent tolerance without the need for any immunosuppressive medication," Tung says. "That's what I'm investigating with my mouse model."

Tung's work in limb transplantation in many ways parallels research being conducted in organ transplantation. But limb transplantation entails different challenges because it involves several kinds of tissue: skin, muscles, tendons, nerves and bone. Each of these elicits a different degree of response from the recipient.

"It's not entirely predictable that something that is successful in organ transplantation will have the same effect on a limb transplant," Tung says.

In recently published research, Tung demonstrated the effectiveness of costimulation-blocking therapy, which is designed to induce tolerance to the tissues in a transplanted hindlimb but not to globally suppress the immune system.

The mice received an antibody that blocked the action of certain molecules important for the immune system's T cells to attack foreign tissue. According to Tung, this strategy, called costimulation blockade, blocks the immune response to only the donor tissue. The immune system can still react to infections or cancer.

In addition to the costimulation blockade, mice received donor bone marrow, either as an infusion or simply as the marrow present in the bones of the donor hindlimb. Earlier research suggested that donor bone marrow could help induce transplant tolerance, and Tung found that the small amount of bone marrow within the hindlimb was as effective as a large infusion of bone marrow cells given intravenously.

While the costimulation blockade/bone marrow therapy did not result in permanent tolerance of the transplanted hindlimb, it greatly extended the time before the mice rejected the new limb.

In one set of experiments, mice not given a costimulation blockade rejected their new limbs after about 10 days, whereas the muscles and bone of the transplanted limb in blockade-treated mice survived an average of 222 days.

"Research into costimulation blockade is relatively new," Tung says. "And just over the last few years, a half dozen new costimulatory pathways have been recognized. Researchers have found that when you combine several antibodies to block several pathways at once, it may increase the effectiveness of the therapy. That's a big step toward tolerance of transplanted tissue."

The next stage of Tung's research will focus on these new costimulation blockers. In addition, Tung will collaborate with colleague Susan E. Mackinnon, M.D., the Sydney M. Jr. and Robert H. Shoenberg Professor of Surgery and chief of the Division of Plastic and Reconstructive Surgery, to investigate regeneration of nerves in transplanted limbs.

"Patients receiving a hand transplant don't need it to survive -- they are getting it to improve their functionality," Tung says. "If the new hand doesn't work well because of nerve problems, that defeats the purpose of the surgery. I am also involved in research on nerve regeneration, and I would like to use that knowledge to improve regeneration of nerves in limb transplants."



On the web: http://medinfo.wustl.edu/ 

Advertise in this space for $10 per month. Contact us today.


Related Transplantation News
Cell study offers more diabetic patients chance of transplant
Final chapter to 60-year-old blood group mystery
'Petri dish lens' gives hope for new eye treatments
New assessment reveals value of second embryo biopsy for women of advanced maternal age
Blood condition is highly predictive of graft failure in pediatric kidney transplant
Research could help track stem cells in the body
Study shows how patients use Facebook to solicit kidney donations
University of Maryland completes most extensive full face transplant to date
Washington University gets grant to study the human virome in kids
NewYork-Presbyterian/Columbia surgeons perform first 'ex vivo' lung transplants in New York

Subscribe to Transplantation Newsletter

Enter your email address:


 Additional information about the news article

Cohen M, Mohanakumar T, Mackinnon SE, Tung TH. Chimerism after vascularized limb versus bone marrow transplantation. Journal of Reconstructive Microsurgery 2006;22:375-384.

Tung TH, Mackinnon SE, Mohanakumar T. Long-term limb allograft survival using anti-CD40L antibody in a murine model. Transplantation 2003;75:644-650.

Funding from the National Institutes of Health and the Howard Hughes Medical Institute supported this research.

Washington University School of Medicine's full-time and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked fourth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)