RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
  Hemochromatosis
  Hyperlipidemia
  Metabolic Syndrome
  Obesity
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Metabolism Channel

subscribe to Metabolism newsletter
Latest Research : Metabolism

   EMAIL   |   PRINT
O-GlcNAc sugar helps control cell division

Sep 28, 2005 - 1:27:00 PM
"The dogma for decades has been that the cycle of cell division is controlled by the appearance and disappearance of certain proteins called cyclins, but experiments have shown that you can knock out any of these and still get perfectly normal cell division. In contrast, our experiments show that by increasing or decreasing the amount of sugar attached to proteins, the cell cycle is disrupted and isn't salvageable unless O-GlcNAc levels are fixed."

 
[RxPG] Johns Hopkins scientists have discovered that a deceptively simple sugar is in fact a critical regulator of cells' natural life cycle.

The discovery reveals that, when disturbed, this process could contribute to cancer or other diseases by failing to properly control the steps and timing of cell division, the researchers say. The findings are described in the Sept. 23 issue of the Journal of Biological Chemistry, available online now.

The sugar, known as O-GlcNAc (pronounced oh-GLUCK-nack), is used inside cells to modify proteins, turning the proteins off or on, helping or preventing their interactions with other proteins, keeping them from destruction or allowing their destruction. The comings and goings of the sugar on proteins seem to be important controllers of cell division, say the researchers.

"The dogma for decades has been that the cycle of cell division is controlled by the appearance and disappearance of certain proteins called cyclins, but experiments have shown that you can knock out any of these and still get perfectly normal cell division," says the study's first author, Chad Slawson, Ph.D., a postdoctoral fellow in biological chemistry in Johns Hopkins' Institute for Basic Biomedical Sciences. "In contrast, our experiments show that by increasing or decreasing the amount of sugar attached to proteins, the cell cycle is disrupted and isn't salvageable unless O-GlcNAc levels are fixed."

In experiments with human cells and mouse cells, Slawson and his colleagues showed that preventing a cell from removing the sugar from proteins causes the cell to copy its genetic material and make new nuclei, but to fail to divide in two. The end result is cells with more than one nucleus -- a situation fairly common in cancer cells.

"Cells with more than one nucleus can survive, but they are dysregulated -- things just don't go right," says Slawson. "The longer they survive, the worse it gets."

On the other hand, cells that had higher than normal amounts of the enzyme that removes the sugar from proteins ended up with nuclei that didn't look right under a powerful microscope. Instead of being disseminated fairly uniformly through the entire nucleus, the genetic material of these cells was bunched up, giving the contents of the nucleus a "wrinkly" appearance.

Exactly what is going wrong is still unclear, adds Gerald Hart, Ph.D., professor and director of biological chemistry. He's been studying O-GlcNAc since his lab discovered it attached to proteins inside cells 20 years ago. They now know which enzymes put the sugar onto proteins and which enzymes take it off -- and knocking out or blocking these enzymes allowed the researchers to control whether proteins were sugar-laden or sugar-free.

"Normally, the enzyme that adds the sugar to proteins is enriched at the hub of activity during cell division," notes Slawson. "When we knock it out or block it with a chemical, the cell cycle lengthens and cell division doesn't happen properly. Clearly the enzyme is there for a reason."

But understanding what the sugar itself is doing and how its presence on or absence from proteins affects the cell depends solely on what protein it's being attached to or removed from.

"Whether it's turning something on or off depends on the protein to which the sugar is attached," says Hart. "It's harder than having discovered an enzyme that does just one thing. To figure out the sugar's effect, we have to look at what it's modifying, and the extent and the location of the modification."

The sugar seems to modify as many proteins as the ubiquitous phosphate groups widely recognized as protein controllers, and it frequently seems to compete with phosphate groups for the same spots on proteins. Hart suggests that a particular balance between O-GlcNAc and phosphates on proteins may help fine-tune their activities.

The researchers' next steps are to examine select proteins modified by O-GlcNAc and found at locations important for various steps in cell division to figure out why an imbalance of O-GlcNAc on the cells' proteins has such a dramatic effect on the process.



Publication: Sept. 23 issue of the Journal of Biological Chemistry
On the web: www.hopkinsmedicine.org 

Advertise in this space for $10 per month. Contact us today.


Related Metabolism News
Overweight people will stay that way for ever
Your shampoo could be making you fat
This asthma drug can burn your fat
Eating less may help you live longer
Oral bisphosphonate related jaw necrosis
Burning fat can lead to a longer life in worms
New obesity drug, Tesofensine, seems promising
Can slowing down 'fat burning' genes reduce obesity?
Single mechanism to explain metabolic syndrome
Weight loss better than insulin therapy in type 2 Diabetes Mellitus

Subscribe to Metabolism Newsletter

Enter your email address:


 Additional information about the news article
The researchers were funded by the National Institute of Child Health and Human Development, the National Institute of Diabetes and Digestive and Kidney Diseases and the National Cancer Institute.

Authors on the paper are Slawson, Natasha Zachara, Keith Vosseller, Win Den Cheung, Daniel Lane and Gerald Hart, all at Johns Hopkins while working on this project. Vosseller is now at Drexel University.

O-GlcNAc modification of proteins is detected using an antibody developed at Johns Hopkins. Under a licensing agreement between Covance Research Products, Sigma Chemical Company and The Johns Hopkins University School of Medicine, Hart receives a percentage of royalties received by the university on sales of this antibody (CTD 110.6). The terms of this arrangement are being managed in accordance with the university's conflict of interest policy.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)