RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
  Drug Delivery
  Nanotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Nanotechnology Channel

subscribe to Nanotechnology newsletter
Latest Research : Biotechnology : Nanotechnology

   EMAIL   |   PRINT
Nanoparticles could deliver multi-drug therapy to tumors

Jun 22, 2006 - 5:08:00 PM , Reviewed by: Priya Saxena
"The idea that we can potentially carry more than one Taxol per buckyball is exciting, but the real advantage of fullerene immunotherapy over other targeted therapeutic agents is likely to be the buckyball's potential to carry multiple drug payloads, such as Taxol plus other chemotherapeutic drugs"

 
[RxPG] In the ongoing search for better ways to target anticancer drugs to kill tumors without making people sick, researchers find that nanoparticles called buckyballs might be used to significantly boost the payload of drugs carried by tumor-targeting antibodies.

In research due to appear in an upcoming issue of the journal Chemical Communications, scientists at Rice University and The University of Texas M. D. Anderson Cancer Center describe a method for creating a new class of anti-cancer compounds that contain both tumor-targeting antibodies and nanoparticles called buckyballs. Buckyballs are soccer ball-shaped molecules of pure carbon that can each be loaded with several molecules of anticancer drugs like Taxol®.

In the new research, the scientists found they could load as many as 40 buckyballs into a single skin-cancer antibody called ZME-018. Antibodies are large proteins created by the immune system to target and attack diseased or invading cells.

Previous work at M. D. Anderson has shown that ZME-018 can be used to deliver drugs directly into melanoma tumors, and work at Rice has shown that Taxol can be chemically attached to a buckyball.

"The idea that we can potentially carry more than one Taxol per buckyball is exciting, but the real advantage of fullerene immunotherapy over other targeted therapeutic agents is likely to be the buckyball's potential to carry multiple drug payloads, such as Taxol plus other chemotherapeutic drugs," said Rice's Lon Wilson, professor of chemistry. "Cancer cells can become drug resistant, and we hope to cut down on the possibility of their escaping treatment by attacking them with more than one kind of drug at a time."

Researchers have long dreamed of using antibodies like ZME-018 to better target chemotherapy drugs like Taxol, and M. D. Anderson's Michael G. Rosenblum, Ph.D., professor in the Department of Experimental Therapeutics and Chief of the Immunopharmacology and Targeted Therapy Laboratory, has conducted some of the pioneering work in this field.

"This is an exciting opportunity to apply novel materials such as fullerenes to generate targeted therapeutics with unique properties," Rosenblum said. "If successful, this could usher in a new class of agents for therapy not only for cancer, but for other diseases as well."

While it's possible to attach drug molecules directly to antibodies, Wilson said scientists haven't been able to attach more than a handful of drug molecules to an antibody without significantly changing its targeting ability. That happens, in large part, because the chemical bonds that are used to attach the drugs -- strong, covalent bonds -- tend to block the targeting centers on the antibody's surface. If an antibody is modified with too many covalent bonds, the chemical changes will destroy its ability to recognize the cancer it was intended to attack.

Wilson said the team from Rice and M. D. Anderson had planned to overcome this limitation by attaching multiple molecules of Taxol to each buckyball, which would then be covalently connected to the antibodies. To the team's surprise, many more buckyballs than expected attached themselves to the antibody. Moreover, no covalent bonds were required, so the increased payload did not significantly change the targeting ability of the antibody.

Wilson said certain binding sites on the antibody are hydrophobic (water repelling), and the team believes that these hydrophobic sites attract the hydrophobic buckyballs in large numbers so multiple drugs can be loaded into a single antibody in a spontaneous manner to give the antibody-drug agent more "bang for the buck."

"The use of these nanomaterials solves some intractable problems in targeted therapy and additionally demonstrates the increasing value of the team science approach bridging different disciplines to uniquely address existing problems," Rosenblum said.



Publication: Upcoming issue of the journal Chemical Communications
On the web: www.rice.edu 

Advertise in this space for $10 per month. Contact us today.


Related Nanotechnology News
Nanostructures lend cutting edge to antibiotics
Nanoparticles could offer relief from rashes
Carbon nanotubes can affect lung lining
Gold Nanoparticle Molecular Ruler to Measure Smallest of Life’s Phenomena
Tiny inhaled particles take easy route from nose to brain
Nanoparticles could deliver multi-drug therapy to tumors
Nanotechnology can identify disease at early cellular level
'Custom' nanoparticles could improve cancer diagnosis and treatment

Subscribe to Nanotechnology Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)