RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
  Adrenergics
  Analgesics
  Anti Cancer Drugs
  Anti-Clotting Drugs
  Anti-Inflammatory
  Antibiotics
  Anticholesterol
  Antihypertensives
  Antivirals
  Fatty Acids
  Hypnotics
  Metals
  PPI
  Surfactants
  Varenicline
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Pharmacology Channel

subscribe to Pharmacology newsletter
Latest Research : Pharmacology

   EMAIL   |   PRINT
Array of Micromachined Ultra Sonic Electrospray (AMUSE) Could Shorten Drug Development

Jun 8, 2005 - 8:01:00 PM
The device is a critical component of a mass spectrometer, an instrument that can detect proteins present even in ultra-small concentrations by measuring the relative masses of ionized atoms and molecules. Mass spectrometers can provide a complete protein profile and essentially make proteomics, the study of how proteins are produced and interact within an organ, cell or tissue, possible.

 
[RxPG] The sequencing of the human genome was only the beginning of a much more complex task – deciphering the secrets of cellular chemistry and the mechanisms of disease. While the genome serves as a blueprint to understanding the body, proteins represent the materials that carry out these plans.

There are about 2 million distinct proteins in the human body. That’s a lot of proteins – and the future of personalized medicine depends on a better understanding of proteins, including their structure and interactions with drugs and medical devices.

Researchers at the Georgia Institute of Technology have developed a device that has the potential to significantly reduce the time needed to analyze these important proteins, shortening development time for new drugs and bringing down the overall cost of protein analysis technology. According to findings published in Applied Physics Letters, the device can potentially analyze proteins much faster, more gently and at a lower cost.

“The device has the potential to completely change the landscape of this field,” said Andrei Fedorov, an associate professor in the Woodruff School of Mechanical Engineering at Georgia Tech who leads the project. Fedorov’s collaborators on the project include Professor F.L. Degertekin from the Woodruff School of Mechanical Engineering and Professor F.M. Fernandez from the School of Chemistry and Biochemistry.

The device is a critical component of a mass spectrometer, an instrument that can detect proteins present even in ultra-small concentrations by measuring the relative masses of ionized atoms and molecules. Mass spectrometers can provide a complete protein profile and essentially make proteomics, the study of how proteins are produced and interact within an organ, cell or tissue, possible.

“You need to be able to take a blood sample, pass it through a system and figure out the complete protein profile of the human plasma. It’s an extremely technology-intensive process and you need to have a technology to do this kind of testing quickly and inexpensively,” Fedorov said.

But before the mass spectrometer can analyze a sample, molecules must first be converted to gas-phase charged ions through electrospray ionization (ESI), a process that produces ions by evaporating charged droplets obtained through spraying or bubbling.

Georgia Tech’s AMUSE (Array of Micromachined Ultra Sonic Electrospray) technology has several key advantages over currently available electrospray methods. In AMUSE, the sample aerosolization and protein charging processes are separated, giving AMUSE the unique ability to operate at low voltages with a wide range of solvents. In addition, AMUSE is a nanoscale ion source and drastically lowers the required sample size by improving sample use.

Also important, AMUSE is a “high-throughput” microarray device, meaning that it can analyze many more samples at a time than a conventional electrospray device.

This innovation will be particularly useful for the pharmaceutical industry. Drugs target certain proteins to achieve their designed effect on the body. The pharmaceutical industry must test large numbers compounds on even larger numbers of proteins to determine what effect a substance has on the body and whether or not it is safe. With AMUSE, the time-consuming process could be streamlined considerably, which could significantly shorten drug development time.

In addition to its ability to handle a much higher number of samples, AMUSE can also be manufactured more cheaply than current ESI devices. Conventional electrospray devices in mass spectrometers generally cost around $150 a piece and must be cleaned after each sample is analyzed. AMUSE could be made disposable and mass produced at a few dollars a piece, making Georgia Tech’s device a key step toward more affordable mass spectrometers for clinical applications.

For example, to determine whether a patient has cancer, a small blood sample is typically frozen and sent out to a testing lab at another facility. This freezing process and trip to the lab have a significant impact, damaging the proteins and possibly giving an incomplete analysis. In the future, with a powerful and portable mass spectrometer, it may be possible for a doctor to take a sample directly from the patient, place it in the device and receive an analysis on the spot.



Publication: Applied Physics Letters
On the web: www.gatech.edu 

Advertise in this space for $10 per month. Contact us today.


Related Pharmacology News
Palliative radiotherapy for bone metastases in elderly patients improves quality of life
Research shows promise for microwave ablation to relieve painful bone and soft-tissue tumors
Experimental study suggests bone-marrow grafts show promise for some sufferers of low-back pain
Study suggests dexmedetomidine before surgery reduced remifentanil-induced hyperalgesia
Research examines effects of opioids on patients with sickle cell disease
Full range of treatment settings and their effects on radiofrequency heat lesion size
High-dose opioids disturb hormones long-term, but mental and physiologic function improves
Web-based tools found to enhance recruitment and prescreening for clinical pain trials
Experimental study suggests bone-marrow grafts show promise for some sufferers of low-back pain
Study: Pain improves during first year but mental-health problems linger

Subscribe to Pharmacology Newsletter

Enter your email address:


 Additional information about the news article
The Georgia Institute of Technology is one of the nation's premiere research universities. Ranked among U.S. News & World Report's top 10 public universities, Georgia Tech educates more than 16,000 students every year through its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech maintains a diverse campus and is among the nation's top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute. During the 2003-2004 academic year, Georgia Tech reached $341.9 million in new research award funding.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)