RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
  AIDS
  Anthrax
  Dengue
  Ebola
  HCV
  Influenza
  Leishmaniasis
  Malaria
   Plasmodium
  MRSA
  Mumps
  Pertussis
  Prion Diseases
  SARS
  Shigella
  Small Pox
  Tuberculosis
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Millington et al. Plasmodium Channel

subscribe to Plasmodium newsletter
Latest Research : Infectious Diseases : Malaria : Plasmodium

   EMAIL   |   PRINT
Malaria parasite plasmodium impairs key immune system cells

Apr 12, 2006 - 1:36:00 PM , Reviewed by: Priya Saxena
Millington et al.'s results show that dendritic cells exposed to P. chabaudi–infected red blood cells do not activate normally.

 
[RxPG] Plasmodium, the parasite responsible for malaria, impairs the ability of key cells of the immune system to trigger an efficient immune response. This might explain why patients with malaria are susceptible to a wide range of other infections and fail to respond to several vaccines. In a study published today in the open access journal Journal of Biology, researchers show that if dendritic cells, the key cells involved in initiating immunity, are exposed to red blood cells infected with Plasmodium chabaudi, they initiate a sequence of events that result in compromised antibody responses. The researchers show that this is due to the presence of hemozoin, a by-product of the digestion of hemoglobin by Plasmodium, in infected red blood cells. These observations also explain why vaccines for many diseases are so ineffective during malaria infection, and suggest that the use of preventive anti-malarial drugs before vaccination may improve vaccine-induced protection.

In a study funded by the Wellcome Trust, Owain Millington and colleagues from the University of Strathclyde, UK, studied the effects of Plasmodium chabaudi, the mouse Plasmodium, on mice antigen-presenting dendritic cells in culture and confirmed their findings in live mice.

Millington et al.'s results show that dendritic cells exposed to P. chabaudi–infected red blood cells do not activate normally. They express lower levels of membrane molecules that stimulate other cells of the immune system, and their cytokine production is lower than that of normal dendritic cells. Millington et al. demonstrate that this is caused by exposure to hemozoin present in infected red blood cells.

Millington et al. then show that P.chabaudi-infected dendritic cells fail to activate helper T cells properly – T cells are activated but show reduced proliferation and cytokine production in culture. Importantly, during malaria infection, T cells fail to migrate to B-cell areas of lymph nodes or spleen, and this results in the failure of B-cell activation and antibody production.



Publication: Suppression of adaptive immunity to heterologous antigens during plasmodium infection through haemozoin-induced failure of DC function. Owain R Millington, Caterina Di Lorenzo, R Stephen Phillips, Paul Garside & James M Brewer; Journal of Biology 2006,5:5 (12 April 2006)
On the web: jbiol.com/content/5/2/5 

Advertise in this space for $10 per month. Contact us today.


Related Plasmodium News
AgDscam gene Holds the Key to Broad-Based Pathogen Recognition
Genes responsible for malaria parasite's survival pin pointed
Malaria parasite plasmodium impairs key immune system cells
How Plasmodium falciparum sneaks past the human immune system
How Plasmodium breaks in to blood cells

Subscribe to Plasmodium Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)