RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
  Emergency Medicine
  Internal Medicine
  Respiratory Medicine
   Asthma
   COPD
   Cystic Fibrosis
  Sexual Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Respiratory Medicine Channel

subscribe to Respiratory Medicine newsletter
Latest Research : Medicine : Respiratory Medicine

   EMAIL   |   PRINT
A1 lets lungs breathe a sigh of relief

Apr 3, 2005 - 1:11:00 PM

The authors also show that high oxygen concentration stimulates A1, that A1 regulates death of cells in the lung, and that it plays a central role in the induction of other proteins that modulate programmed cell death. In mice lacking A1, the harmful effects of oxygen are intensified whereas overexpressing A1 decreases lung cell death in the presence of oxygen.

 
[RxPG] Patients with lung and heart disease are commonly given supplemental oxygen, however very high concentrations of oxygen administered for extended periods of time can trigger lung injury.

The mechanism underlying this lung injury has not been characterized. In a study appearing in the April 1 issue of The Journal of Clinical Investigation, Jack Elias and colleagues from Yale University demonstrate that a protein called A1 is a critical regulator in this type of lung injury.

The authors also show that high oxygen concentration stimulates A1, that A1 regulates death of cells in the lung, and that it plays a central role in the induction of other proteins that modulate programmed cell death. In mice lacking A1, the harmful effects of oxygen are intensified whereas overexpressing A1 decreases lung cell death in the presence of oxygen.

In an accompanying commentary, G.R.Scott Budinger and Jacob Sznajder writes that these studies will "influence future investigations into the molecular mechanisms by which these [A1] pathways become activated to contribute to…lung injury."



Publication: TITLE: Bcl-2-related protein A1 is an endogenous and cytokine-stimulated mediator of cytoprotection in hyperoxia acute lung injury
On the web: View the PDF of this article commentary 

Advertise in this space for $10 per month. Contact us today.


Related Respiratory Medicine News
Surgically treating GERD helps preserve lung function before and after transplantation
Breast-feeding babies staves off asthma risk
Mannose receptor plays a key role in allergic responses to cat dander
New genetic variants for COPD discovered in a groundbreaking study by SpiroMeta Consortium
Horse barn workers at high risk of respiratory symptoms
Carbon nanotubes can affect lung lining
Pirfenidone could be new agent for treatment of Idiopathic pulmonary fibrosis.
MEMS sensor for remote monitoring of asthmatic patients
Obese children have respiratory problems during surgery
New York Methodist Hospital to study airway bypass treatment for emphysema

Subscribe to Respiratory Medicine Newsletter

Enter your email address:


 Additional information about the news article
TITLE: Bcl-2-related protein A1 is an endogenous and cytokine-stimulated mediator of cytoprotection in hyperoxia acute lung injury

AUTHOR CONTACT:
Jack Elias
Yale University School of Medicine, New Haven, Connecticut, USA.
Phone: (203) 785-4163; Fax: (203) 785-3826; E-mail: [email protected]

View the PDF of this article at:

ACCOMPANYING COMMENTARY:

TITLE: To live or die: a critical decision for the lung

AUTHOR CONTACT:
Jacob I. Sznajder
Northwestern University, Chicago, Illinois, USA.
Phone: (312) 908-8163; Fax: (312) 908-4650; E-mail: [email protected]

View the PDF of this article at: https://www.the-jci.org/article.php?id=24681
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)