RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
  Emergency Medicine
  Internal Medicine
  Respiratory Medicine
   Asthma
   COPD
   Cystic Fibrosis
  Sexual Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Research Article
American Journal of Respiratory Critical Care Medicine
Respiratory Medicine Channel

subscribe to Respiratory Medicine newsletter
Latest Research : Medicine : Respiratory Medicine

   EMAIL   |   PRINT
Osteopontin may be useful in the treatment of Idiopathic Pulmonary Fibrosis

Jan 12, 2006 - 5:41:00 AM , Reviewed by: Rashmi Yadav
"By manipulating osteopontin levels, we may be able to slow or stop the course of this deadly disease. In addition, the level of osteopontin may be used as a diagnostic marker for this disease."

 
[RxPG] In an article in the Jan. 15 issue of the American Journal of Respiratory Critical Care Medicine, University of Pittsburgh researchers report that a serious, life-threatening form of pulmonary fibrosis, called idiopathic pulmonary fibrosis, lacks all the hallmarks of inflammation and is probably unnecessarily treated with anti-inflammatory drugs. Moreover, in a related study, the investigators identified a protein found in excess amounts in the lung tissue of patients with idiopathic pulmonary fibrosis, which may be a more appropriate target for therapy.

Interstitial lung disease describes a diverse set of chronic lung conditions that often have strikingly similar symptoms but different clinical courses. However, all are characterized by differing degrees of progressive scarring of lung tissue between the air sacs, or the interstitium. With repeated damage, the interstitium becomes thickened and stiff, or fibrotic, making it increasingly difficult for the individual to breathe. Some forms of interstitial lung disease, particularly idiopathic pulmonary fibrosis, which has no known cause, have a very high death rate due to respiratory failure. Effective treatment, however, is complicated by the fact that a definitive diagnosis often requires a lung biopsy.

"Unfortunately, many patients do not receive lung biopsies. As a result, about one-third of patients who come to our clinic have previously been misdiagnosed, and many have been treated with the wrong medications," explained James Dauber, M.D., medical director of the University of Pittsburgh's Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, and professor of medicine, division of pulmonary, allergy and critical care medicine.

To improve the diagnosis and treatment of interstitial lung diseases, Naftali Kaminski, M.D., director of the Simmons Center and associate professor of pathology and human genetics, Dr. Dauber, and their coworkers decided to test the effectiveness of DNA microarray chip technology in distinguishing between the gene expression patterns of several types of interstitial lung diseases. Because it can be difficult to obtain lung biopsy samples for some types of interstitial lung disease, the Simmons Center investigators collaborated with researchers in Mexico to obtain samples for another type of pulmonary fibrosis known as hypersensitivity pneumonitis - a pneumonia-like inflammation of the lungs caused by the body's immune reaction to small air-borne particles that is more prevalent in countries such as Mexico where pet birds are common.

Drs. Dauber, Kaminski and their collaborators obtained lung biopsy samples from15 patients diagnosed with idiopathic pulmonary fibrosis; 12 patients with hypersensitivity pneumonitis; and eight patients with a third, less-understood type, known as nonspecific interstitial pneumonia. The latter is characterized by inflammation and fibrosis that occurs suddenly and progresses rapidly over a relatively short period of time.

When the investigators analyzed the gene expression patterns of the samples using a DNA microarray chip containing sequences for approximately 46,000 known gene clusters--which represent most of the genes in the human genome--the results were startling. Although all of the patients from whom the samples were taken had similar X-ray and laboratory test results, their gene expression patterns were radically different. Indeed, the investigators found that the hypersensitivity pneumonitis samples showed significantly increased expression of genes associated with inflammation, immune cell activation and immune response. In contrast, there was almost no genetic evidence of inflammation in the idiopathic pulmonary fibrosis samples.

"Our results show that interstitial pulmonary fibrosis and hypersensitivity pneumonitis, which clinically often look quite similar, are really two vastly different conditions," said Dr. Kaminski. "Idiopathic pulmonary fibrosis is characterized by the increased expression of genes involved in the re-growth of lung tissue. So, it is not really an inflammatory condition per se. On the other hand, hypersensitivity pneumonitis does exhibit all of the hallmarks of inflammation, with increased expression of genes that control T-cell activation and immune responses."

Another surprising finding came when the investigators compared these gene expression patterns to those exhibited by biopsies from the eight patients diagnosed with nonspecific interstitial pneumonia. Two of the eight cases exhibited interstitial pulmonary fibrosis-like gene expression patterns, one closely resembled the gene expression pattern of hypersensitivity pneumonitis, while the other five expression patterns resembled neither. Thus, the investigators were able to reclassify some of the cases of nonspecific interstitial pneumonia using this technology.

In an accompanying editorial, Victor J. Thannickal, M.D., of the University of Michigan and Athol U. Wells, M.D., of the Royal Brompton Hospital in London wrote that although "further studies with greater numbers of patients are required," these genetic signatures "provide important clues to the observed differences in clinical course, prognosis and responses to therapy in these two disease processes."

If these findings hold up in larger studies--and Dr. Kaminski is strongly convinced that they will--the diagnosis and management of interstitial lung disease may radically change. In particular, patients with idiopathic pulmonary fibrosis, who are commonly prescribed a course of corticosteroids or other anti-inflammatory drugs as the first line of treatment, will not be subjected to such unwarranted and potentially harmful approaches.

"Until now, the treatment of idiopathic pulmonary fibrosis has been primarily focused on its inflammatory component. However, our findings indicate that lung tissue from these patients does not exhibit a typical inflammatory pattern. So, these patients need to be managed in an entirely new way," said Dr. Kaminski.

Although there currently is no effective treatment for idiopathic pulmonary fibrosis, results of another study suggest help may soon be on the way. Dr. Kaminski and his colleagues reported in the Sept. 6 online edition of PLoS Medicine that idiopathic pulmonary fibrosis lung tissue samples display an "over-abundance" of a protein known as osteopontin, which other studies have implicated in the growth and progression of tumors. In further examining the potential role of osteopontin in idiopathic pulmonary fibrosis, Dr. Kaminski's group found that it directly increases the proliferation and movement of fibroblasts, cells centrally involved in lung fibrosis.

"Taken together, these findings are very exciting, because we now have a basis for designing drugs that are specifically directed against osteopontin. By manipulating osteopontin levels, we may be able to slow or stop the course of this deadly disease. In addition, the level of osteopontin may be used as a diagnostic marker for this disease," explained Dr. Kaminski. He added that his group is currently investigating whether measuring the expression patterns of osteopontin and other genes can predict disease progression and outcome.

In addition to Drs. Kaminski and Dauber, other investigators involved in this research include Kevin Gibson, M.D., Thomas Richards, Ph.D., and Samuel Yousem, M.D., from the University of Pittsburgh; Moises Selman, M.D., Lourdes Barrera, Msc., and Andrea Estrada, M.D., of the Instituto Nacional de Enfermedades Respiratorias in Tlalpan, Mexico; Annie Pardo, Ph.D., of the Facultad de Ciencias, Universidad National Autonoma de Mexico, Mexico City.



Publication: The study appears in the Jan. 15 issue of the American Journal of Respiratory Critical Care Medicine
On the web: http://www.upmc.edu/ 

Advertise in this space for $10 per month. Contact us today.


Related Respiratory Medicine News
Surgically treating GERD helps preserve lung function before and after transplantation
Breast-feeding babies staves off asthma risk
Mannose receptor plays a key role in allergic responses to cat dander
New genetic variants for COPD discovered in a groundbreaking study by SpiroMeta Consortium
Horse barn workers at high risk of respiratory symptoms
Carbon nanotubes can affect lung lining
Pirfenidone could be new agent for treatment of Idiopathic pulmonary fibrosis.
MEMS sensor for remote monitoring of asthmatic patients
Obese children have respiratory problems during surgery
New York Methodist Hospital to study airway bypass treatment for emphysema

Subscribe to Respiratory Medicine Newsletter

Enter your email address:


 Additional information about the news article
This research was supported by a grant from the National Heart, Lung and Blood Institute, National Institutes of Health and a donation from the Simmons family.

Contact: Jim Swyers
SwyersJP@upmc.edu
412-647-3555

Lisa Rossi
RossiL@upmc.edu
412-647-3555

University of Pittsburgh Medical Center

 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)