RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
  Emergency Medicine
  Internal Medicine
  Respiratory Medicine
   Asthma
   COPD
   Cystic Fibrosis
  Sexual Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Respiratory Medicine Channel

subscribe to Respiratory Medicine newsletter
Latest Research : Medicine : Respiratory Medicine

   EMAIL   |   PRINT
Using microDMx sensor to develop better instruments to treat lung disease

Jan 24, 2006 - 3:57:00 PM , Reviewed by: Priya Saxena
"What is unique about this sensor, and the use of the microDMx technology, is the fact that it can be configured to not just analyse one disease or condition, but it has the potential to be used to analyse a broad spectrum of conditions from asthma, to cancer and metabolic disorders such as diabetes"

 
[RxPG] A new technique based on the same technology used to detect chemical warfare agents and explosives is being employed by scientists at The University of Manchester to treat hospital patients with lung disease.

Dr Paul Thomas and a team of researchers are using a sensor, commonly used to detect explosives at airports, to develop a new way of diagnosing lung disease.

The microDMx" sensor, developed by Sionex Corporation, is being used to develop a new technique which is able to detect 'unhealthy' molecules present in the breath of a patient.

The technology is currently being tested at Wythenshawe Hospital's North West Lung Research Centre (NWLRC). The aim is to produce a device which will enable doctors to monitor patients with lung or respiratory conditions by simply asking them to breathe into it.

The microDMx sensor is based on a Differential Mobility Spectrometer (DMS) and is a significant advance over the current Ion Mobility Spectrometer (IMS) systems which are currently deployed in airports to detect minute traces of explosives or drugs. The microDMx sensor is able to identify molecules that may be the cause of lung diseases such as cancer, asthma and chronic obstructive pulmonary disease caused by smoking.

Dr Paul Thomas from the University's School of Chemical Engineering and Analytical Science, who is leading the research, said: "Our vision is that one day we will be able to detect a previously undetectable tumour metabolising inside a human lung simply by asking a patient to breathe into a device like this. For now our aim to use the microDMx sensor to develop better instruments which will improve patient care and treatment.

"The potential is such that we will not only be able to provide more accurate diagnosis, but we will also be able to tailor treatments to the individual. For instance, if a patient is taking steroids for asthma, we would be able determine whether they were being given the right amount of steroids from the molecules in their breath which relate to the severity of the inflammation in their lungs."

NWLRC Consultant Dr Dave Singh, said: "This research could make dramatic improvements to the detection of lung diseases. We are really excited about the future possibilities for diagnosing diseases, and monitoring the response to treatment."

The microDMx sensor can be used to detect and analyse a broad spectrum of molecules associated with different conditions with extreme sensitivity. It can also be configured to block out molecules produced by common ailments such as sore throats or chesty coughs which may interfere with the accuracy of data.

"What is unique about this sensor, and the use of the microDMx technology, is the fact that it can be configured to not just analyse one disease or condition, but it has the potential to be used to analyse a broad spectrum of conditions from asthma, to cancer and metabolic disorders such as diabetes," says Dr Thomas.

The microDMx sensor is a microfabricated chip which operates as a programmable chemical filter allowing specific ion species to be selected and detected by the application of RF and DC electric fields. The older IMS technology which is used by the military and security services for the detection of chemical warfare agents, drugs and explosives has had little use beyond its use by the military and security services despite its ability to separate molecules on the basis of their shape and size. The DMS and microDMx technology however offers significant advantages over conventional IMS in terms of increased sensitivity and selectivity which make it more applicable for much wider range of applications outside the previous narrow focus.



Publication: University of Manchester
On the web: www.manchester.ac.uk 

Advertise in this space for $10 per month. Contact us today.


Related Respiratory Medicine News
Surgically treating GERD helps preserve lung function before and after transplantation
Breast-feeding babies staves off asthma risk
Mannose receptor plays a key role in allergic responses to cat dander
New genetic variants for COPD discovered in a groundbreaking study by SpiroMeta Consortium
Horse barn workers at high risk of respiratory symptoms
Carbon nanotubes can affect lung lining
Pirfenidone could be new agent for treatment of Idiopathic pulmonary fibrosis.
MEMS sensor for remote monitoring of asthmatic patients
Obese children have respiratory problems during surgery
New York Methodist Hospital to study airway bypass treatment for emphysema

Subscribe to Respiratory Medicine Newsletter

Enter your email address:


 Additional information about the news article
Dr Thomas' research will form part of a new National Initiative in Ion Mobility Spectrometry (NIIMS), which aims to explore the use of IMS measurement within the pharmaceutical and biomedical fields. Alongside Professor Colin Creaser from Nottingham Trent University he will lead a consortium of experts and industrial partners, who will be evaluating DMS and IMS potential in areas such as high-speed separations of complex mixtures and structural characterisation of pharmaceuticals and biomolecules.

Pharmaceutical giants GlaxoSmithKline and AstraZeneca have already pledged their support for the NIIMS initiative, along with Micromass UK, committing £530K.

microDMx is a trademark of Sionex Corporation
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)