RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
  Bacteriology
  Virology
   West Nile Virus
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Virology Channel

subscribe to Virology newsletter
Latest Research : Microbiology : Virology

   EMAIL   |   PRINT
xCT molecule is a major gateway for KSHV to enter human cells

Apr 7, 2006 - 1:56:00 PM , Reviewed by: Priya Saxena
Hopefully this will be the beginning of exciting new directions in this field, as it is likely to provide a useful framework for integration of the cell biology and epidemiology of this clinically important virus."

 
[RxPG] Researchers at the National Institute of Allergy and Infectious Disease (NIAID), a component of the National Institutes of Health (NIH), have identified a critical human cell surface molecule involved in infection by Kaposi's sarcoma herpesvirus (KSHV), the virus that causes Kaposi's sarcoma and certain forms of lymphoma. Kaposi's sarcoma is a major cancer associated with HIV/AIDS, and it typically manifests as multiple purple-hued skin lesions.

In the March 31, 2006 issue of Science, NIAID research fellow Johnan Kaleeba, Ph.D. and senior investigator Edward A. Berger; Ph.D., describe how the molecule xCT is a major gateway that KSHV uses to enter human cells. The molecule may also play a role in the development of Kaposi's sarcoma and other syndromes associated with the virus.

The natural function of xCT in the body is to transport molecules necessary for protecting against stress into cells. When cells are stressed, they express more xCT on their surfaces. Of note, this sort of stress can be caused by KSHV itself. This suggests that the virus may facilitate its own infectivity and dissemination in the body by inducing a physiological state that results in increased numbers of its own receptor.

"The advancement of knowledge achieved in this study highlights the outstanding intramural research that takes place here on the NIH campus," says Elias A. Zerhouni, M.D., NIH director.

"Understanding the mechanisms of cell entry of Kaposi's sarcoma herpesvirus is a landmark achievement in and of itself," says NIAID director Anthony S. Fauci, M.D. "But the connection between the virus and expression of its own receptor on a cell is even more provocative because it might change the way we think about KSHV-associated diseases and their treatment."

Although less common in the United States now than early in the AIDS pandemic, Kaposi's sarcoma is still the most common cancer associated with HIV infection. Prior to the AIDS pandemic, it was an obscure disease. First identified as a multi-pigmented skin disease by a Hungarian doctor named Moritz Kaposi in 1872, it was considered to be quite rare--a medical curiosity usually found in particular populations such as older Italian men, transplant patients and young men in certain parts of sub-Saharan Africa. But then at the dawn of the AIDS pandemic in the early 1980s, the small purplish Kaposi's sarcoma skin lesions began appearing on the bodies of young American men, many of whom went on to develop opportunistic infections.

Dr. Berger became interested in KSHV because of his interest in how viruses enter cells. A decade ago, his research team was the first to identify CXCR4 as one of the coreceptors that allows HIV to gain entry into cells of the immune system. This discovery quickly led to the identification by Dr. Berger's group and several other research teams of CCR5 as the other HIV coreceptor.

By applying the same technology used to identify CXCR4, Drs. Kaleeba and Berger ultimately identified the protein xCT as the receptor that can make cells permissive for KSHV fusion.

The NIAID discovery may lead to new avenues for treating KSHV, says Dr. Berger. Moreover, their finding should enable scientists to determine whether levels of xCT determine disease severity. It also will allow researchers to study whether the expression of xCT on cells varies among different groups of people and whether these variations are genetic or environmental. This research may ultimately explain why certain groups are more at risk for Kaposi's sarcoma.

"Our finding provides a new perspective on the disease," says Dr. Kaleeba, who is originally from Uganda where Kaposi's sarcoma accounts for at least 10 percent of known tumors. "Hopefully this will be the beginning of exciting new directions in this field, as it is likely to provide a useful framework for integration of the cell biology and epidemiology of this clinically important virus."



Publication: JAR Kaleeba and EA Berger. Kaposi's sarcoma-associated herpesvirus fusion-entry receptor: cystine transporter xCT. Science DOI: 10.1126/science.1120878 (2006).
On the web: www.niaid.nih.gov 

Advertise in this space for $10 per month. Contact us today.


Related Virology News
How West Nile virus evades immune defenses
Innovative method for creating a human cytomegalovirus vaccine outlined
Cracking Virus Protection Shield
Viruses trade-off between survival and reproduction
New hybrid virus provides targeted molecular imaging of cancer
Mass spectrometry to detect norovirus particles
xCT molecule is a major gateway for KSHV to enter human cells
Surprising discovery about the inner workings of vesicular stomatitis virus (VSV)
New human retrovirus - Xenotropic MuLV-related virus (XMRV)
Viruses can be forced to evolve as better delivery vehicles for gene therapy

Subscribe to Virology Newsletter

Enter your email address:


 Additional information about the news article
NIAID is a component of the National Institutes of Health. NIAID supports basic and applied research to prevent, diagnose and treat infectious diseases such as HIV/AIDS and other sexually transmitted infections, influenza, tuberculosis, malaria and illness from potential agents of bioterrorism. NIAID also supports research on basic immunology, transplantation and immune-related disorders, including autoimmune diseases, asthma and allergies.

The National Institutes of Health (NIH)--The Nation's Medical Research Agency--includes 27 Institutes and Centers and is a component of the U. S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)