RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
  Bladder
  Blood
   Multiple Myeloma
   Non-Hodgkin's Lymphoma
  Bone Cancer
  Brain
  Breast Cancer
  Carcinogens
  Cervical Cancer
  Colon
  Endometrial
  Esophageal
  Gastric Cancer
  Liver Cancer
  Lung
  Nerve Tissue
  Ovarian Cancer
  Pancreatic Cancer
  Prostate Cancer
  Rectal Cancer
  Renal Cell Carcinoma
  Risk Factors
  Skin
  Testicular Cancer
  Therapy
  Thyroid
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Blood Channel

subscribe to Blood newsletter
Latest Research : Cancer : Blood

   EMAIL   |   PRINT
Protein promoting stem cell survival might be key to poor leukemia prognosis

Feb 25, 2005 - 5:52:00 PM
“Other researchers have previously shown that members of the Bcl-2 family that block apoptosis are involved in regulating the number of HSCs and progenitor cells. But our study showed for the first time that a single such Bcl-2 family protein—Mcl-1—is essential for promoting the survival of these cells.”

 
[RxPG] The complex and life-sustaining series of steps by which hematopoietic stem cells (HSC) give rise to all of the body’s red and white blood cells and platelets has now been discovered to depend in large part on a single protein called Mcl-1. Mcl-1 blocks the biochemical cascade of reactions that trigger apoptosis (cell suicide) of HSCs, according to Joseph Opferman, Ph.D., assistant member of St. Jude Biochemistry. Expression of Mcl-1 thus ensures that HSCs continue to thrive and multiply so they can complete the task of making huge numbers of blood cells. This process is extremely important during the initial development of the blood system before birth. Expression of Mc1-1 is also crucial for maintaining blood cells throughout life as red and white cells and platelets die and must be replaced. HSCs are also needed to rebuild the blood system of patients undergoing chemotherapy and radiation for cancer. Opferman completed work on this project while a member of Stanley Korsmeyer’s laboratory at the Dana-Farber Cancer Institute (Boston).

Mcl-1 belongs to the Bcl-2 family of proteins. Some of these family members promote apoptosis, while others prevent it.

“Other researchers have previously shown that members of the Bcl-2 family that block apoptosis are involved in regulating the number of HSCs and progenitor cells,” Opferman said. “But our study showed for the first time that a single such Bcl-2 family protein—Mcl-1—is essential for promoting the survival of these cells.”

Progenitor cells are precursors arising from HSCs; these cells produce daughter cells that become increasingly specialized and then produce specific types of blood cells, such as B lymphocytes—immune cells that produce antibodies.

“Understanding the role of Mcl-1 in apoptosis and how this gene is regulated will help my lab at St. Jude understand why some cases of leukemia are so difficult to cure,” Opferman said. “The more we understand these diseases, the more likely we’ll be able to design improved treatments for them. This fits into the St. Jude mission of finding cures for catastrophic diseases of childhood, such as leukemia, in order to save lives.”

The importance of Mcl-1 lies in the differing roles it plays in health and disease.

“On one hand, this protein keeps HSCs and progenitor cells alive and multiplying so the body can maintain its needed supply of blood cells,” he said. “However, Mcl-1 also prevents the abnormal white blood cells found in leukemia from undergoing apoptosis in response to chemotherapy or radiation. This makes the leukemia cells resistant to treatments designed to damage the cell so it undergoes apoptosis.”

Opferman is continuing his studies of Mcl-1 at St. Jude to better understand the role this protein plays in both normal hematopoiesis (production of blood cells) as well as in potentially fatal blood cancers.
Opferman and his colleagues had previously shown that Mcl-1 is needed to ensure that HSCs and progenitor cells produced by HSCs are able to generate more specific cells, such as the immune cells known as B and T lymphocytes.

In the Science study, Opferman’s team genetically modified mice so that the gene for Mcl-1 could be specifically deleted from the genome of HSCs and progenitor cells. Upon genetic deletion, these mice developed anemia and had severely reduced numbers of bone marrow (BM) cells, such as HSCs and progenitor cells. This was strong evidence that Mcl-1 was needed to maintain these cell populations.

The team also demonstrated that BM cells lacking Mcl-1 did not multiply when removed from mice and cultured in the laboratory. However, BM cells with the gene continued to flourish. In contrast, liver cells were unaffected following loss of Mcl-1, demonstrating that Mcl-1 is important only in certain cell types. Finally, the investigators showed that growth factors (natural proteins that stimulate cells to grow), such as the “stem cell factor,” trigger the expression of the Mcl-1 gene. This was an important clue to how cells control the powerful effects of Mcl-1.



Publication: This finding, from an investigator at St. Jude Children's Research Hospital, is published in the February 18 issue of Science
On the web: St. Jude Children's Research Hospital 

Advertise in this space for $10 per month. Contact us today.


Related Blood News


Subscribe to Blood Newsletter

Enter your email address:


 Additional information about the news article
Other authors of this study are Hiromi Iwasaki, Christy C. Ong, Heikyung Suh, Shin-ichi Mizuno, Koichi Akashi and Stanley J. Korsmeyer (Dana-Farber Cancer Institute).

This study was supported in part by the Damon Runyon Cancer Research Foundation, the Leukemia and Lymphoma Society, the Howard Hughes Medical Institute and the National Institutes of Health.

St. Jude Children's Research Hospital is internationally recognized for its pioneering work in finding cures and saving children with cancer and other catastrophic diseases. Founded by late entertainer Danny Thomas and based in Memphis, Tenn., St. Jude freely shares its discoveries with scientific and medical communities around the world. No family ever pays for treatments not covered by insurance, and families without insurance are never asked to pay. St. Jude is financially supported by ALSAC, its fundraising organization.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)