RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
  Bladder
  Blood
  Bone Cancer
  Brain
  Breast Cancer
  Carcinogens
  Cervical Cancer
  Colon
  Endometrial
  Esophageal
  Gastric Cancer
  Liver Cancer
  Lung
  Nerve Tissue
  Ovarian Cancer
  Pancreatic Cancer
  Prostate Cancer
  Rectal Cancer
  Renal Cell Carcinoma
  Risk Factors
  Skin
  Testicular Cancer
  Therapy
  Thyroid
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Cancer Channel

subscribe to Cancer newsletter
Latest Research : Cancer

   EMAIL   |   PRINT
Cancer-Causing Genes Can Convert Even the Most Committed Cells

Aug 31, 2005 - 2:14:00 AM
To determine whether the Ews-ERG fusion protein could initiate tumorigenesis in other lineages, particularly lineages of committed cells not typical of human cancers, Rabbitts and colleagues genetically engineered mice to express an Ews-ERG fusion protein exclusively in committed B and T immune cells.

 
[RxPG] Healthy, normal cells follow the rules: don't crowd the neighbors, stick to your own tissue, and die when it's time. When cells no longer observe these regulations, they become cancerous, dividing uncontrollably, pushing out their healthy counterparts, and eventually invading other tissues. All cells appear to have the capacity to become cancerous, but most don't. Just what turns a healthy cell into an outlaw remains uncertain, but cancer researchers Terence Rabbitts and colleagues at the MRC Laboratory of Molecular Biology in Cambridge, United Kingdom, think the genetic changes regularly observed in cancer cells can provide some clues.

Tumor cells commonly exhibit chromosomal abnormalities. One type of aberration occurs when DNA strands break and segments between two different chromosomes are swapped, a process called chromosomal translocation. Depending on where these chromosomal breaks occur, the newly fused DNA can produce novel genes called fusion genes. Fusion genes are the result of explicit chromosomal changes associated with different cell types and result in distinct types of cancers. In human connective tissue cancers (called sarcomas), genetic exchange between Chromosomes 21 and 22 produces the EWS-ERG fusion gene; this translocation is thought to initiate tumor formation in undifferentiated “progenitor” cells called mesenchymal cells.

Progenitor mesenchymal cells are long-lived and self-renewing, and can give rise to many specialized cells, including muscle cells, bone cells, and connective tissue cells. Because the EWS-ERG fusion gene in humans was observed only in sarcomas derived from progenitor lineages, researchers thought it initiated a differentiation program that transformed uncommitted non-cancer cells into committed cancer cells.

To determine whether the Ews-ERG fusion protein could initiate tumorigenesis in other lineages, particularly lineages of committed cells not typical of human cancers, Rabbitts and colleagues genetically engineered mice to express an Ews-ERG fusion protein exclusively in committed B and T immune cells. Mice that expressed the fusion protein developed T cell tumors, demonstrating for the first time that Ews-ERG could cause blood-borne cancers from committed cells, but B cell tumors were not observed. Since the Ews-ERG fusion protein was expressed in both B and T cells in the mutant mice, these results suggest that other factors influence the fusion protein's potential to cause cancer.

These results reveal important information about the way tumors are generated. The cancer-causing effects of the Ews-ERG fusion protein are neither specific to a given tissue type, nor do they exclusively activate tumor cell differentiation in progenitor cells, as originally thought. Rather, EWS-ERG may be able to act as a universal cancer-causing gene, inappropriately activating signaling pathways responsible for regulating the cellular lifecycle. These observations, if shown to extend to other known cancer fusion genes, may indicate that the apparent tissue specificity of Ews-ERG and other similar fusion proteins stems from a particular propensity for chromosomal translocations in a given cell type, rather than from the specificity of the resulting fusion proteins.



Publication: (2005) Cancer-Causing Genes Can Convert Even the Most Committed Cells. PLoS Biol 3(8): e276
On the web: Full text PDF at PLoS biology site 

Advertise in this space for $10 per month. Contact us today.


Related Cancer News


Subscribe to Cancer Newsletter

Enter your email address:


 Additional information about the news article
DOI: 10.1371/journal.pbio.0030276

Published: August 28, 2005

Copyright: © 2005 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)