RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
  Bladder
  Blood
  Bone Cancer
  Brain
  Breast Cancer
  Carcinogens
  Cervical Cancer
  Colon
  Endometrial
  Esophageal
  Gastric Cancer
  Liver Cancer
  Lung
  Nerve Tissue
  Ovarian Cancer
  Pancreatic Cancer
  Prostate Cancer
  Rectal Cancer
  Renal Cell Carcinoma
  Risk Factors
  Skin
  Testicular Cancer
  Therapy
  Thyroid
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Sep 15, 2017 - 4:49:58 AM
Research Article
Cancer Channel

subscribe to Cancer newsletter
Latest Research : Cancer

   EMAIL   |   PRINT
Derivative of the agent zileuton has proteasome inhibiting properties

Nov 22, 2011 - 5:48:06 PM , Reviewed by: Dr. Sanjukta Acharya

***image1***
 
[RxPG] Biochemists at the Technische Universitaet Muenchen (TUM) have now identified the lead structure of a new class of drugs that attacks the proteasome in an unusual way. New medication could be developed on the basis of this previously unknown binding mechanism. The scientists report their results in the scientific journal Angewandte Chemie.

The proteasome, a large protein complex, carries out a vitally important function in the cells of the body. Similar to a recycling plant, it decomposes unneeded proteins into short pieces and recycles them. In this way it controls a number of functions in the cell. It regulates cell growth and division, decomposes damaged proteins and also acts as a key partner of the immune system in immune defense and inflammatory reactions. Because it is involved in so many important mechanisms within the cell, the proteasome is also associated with many diseases such as cancer, mucoviscidosis and a whole series of neurodegenerative disorders such as Parkinson's or Alzheimer's disease.

Due to its significant role in the growth of cancer cells, in recent years the proteasome has taken center stage in pharmacological research as a starting point for cancer medication. When it becomes inhibited, the growth of cancer cells slows down. Bortezomib, the first drug to apply this strategy, generates revenues of over one billion US dollars per year in the meantime. It is used against multiple myeloma, a cancer disease of the bone marrow. Yet in spite of all its successes, the proteasome inhibitors currently in use often have severe disadvantages. As a result of their high reactivity they attack other proteins, too, thereby damaging not only cancer cells but also other healthy cells.

The search for alternatives conducted by a group of scientists headed by Professor Michael Groll, who holds the Chair of Biochemistry in the Department of Chemistry at the TU München, in collaboration with Professor Robert Huber, Director Emeritus at the Max-Plank Institute of Biochemistry and Dr. Stefan Hillebrand from Bayer CropScience, has now borne fruit: In a high throughput screening, the scientists examined a substance library of 200,000 potential agents in their quest to identify proteasome inhibitors – and they were successful. They identified a new structure with the so-called N-hydroxyurea motif, which reacts not only reversibly but above all specifically with the active nucleus of the proteasome. The structure inhibits the function of particular subunits of the protein complexes, which are catalytically active, and thus incapacitates the enzyme. Because of this property, the newly discovered hydroxyurea structures work more specifically than other proteasome inhibitors and are thus expected to lead to less severe adverse side effects.

The scientists were already familiar with the basic hydroxyurea structure, albeit in a completely different context. The substance in question is a derivative of the agent zileuton, which is used to treat asthma. Zileuton itself does not influence the proteasome, but its derivative, which had so far received little attention, does. "We have now found a completely new application for this previously known class of substances," explains Michael Groll. "This is of great advantage, because there are already clinical trials that give us first indications of how this class of substances behaves in the human body."

The initial structure originally discovered in the database inhibited the proteasome very specifically, but not terribly effectively. In order to modify the substance in such a way that it also works in lower concentrations – such as those required for medication – it was an important next step to understand how exactly the structure attacks the proteasome. To shed further light on this, the scientists conducted a crystal structure analysis. The outcome was that the hydroxyurea motif attacked the proteasome in a completely different manner than all other previously known inhibitors. It reacts via hitherto unknown binding pockets that may serve as starting points for the development of the new medication agents.

Starting from preliminary modeling studies, the researchers synthesized a series of different derivatives of the agent, which were then examined using X-ray crystallography and activity tests to optimize the effectiveness of the structure. The results showed that the proteasome inhibiting activity of the hydroxyurea derivatives depends on the two side chains attached to the basic structure.

Because the proteasome is contained in every cell and involved in numerous cellular functions the new inhibiting structure offers a whole range of applications, not only in the field of oncology. In the context of autoimmune diseases, an inhibition of the immunoproteasome, a derivative of the proteasome, might play an important role. In the case of autoimmune diseases, including some forms of rheumatism, the immune system attacks the body's own tissue. If the immunoproteasome is inhibited such over-reactions might be weakened. In future studies Professor Groll's team plans to improve the effectiveness of the hydroxyurea structure via experiments on cell cultures.




Publication: Angewandte Chemie

Funding information and declaration of competing interests: This work was supported by the German Research Foundation (SFB 594 and Cluster of Excellence Center for Integrated Protein Science Munich). The measurements were performed at the PXI beamline at the Paul Scherrer Institute (Villigen, Switzerland).

Related Cancer News


Subscribe to Cancer Newsletter

Enter your email address:


 About Dr. Sanjukta Acharya
This news story has been reviewed by Dr. Sanjukta Acharya before its publication on RxPG News website. Dr. Sanjukta Acharya, MBBS MRCP is the chief editor for RxPG News website. She oversees all the medical news submissions and manages the medicine section of the website. She has a special interest in nephrology. She can be reached for corrections and feedback at [email protected]
RxPG News is committed to promotion and implementation of Evidence Based Medical Journalism in all channels of mass media including internet.
 Additional information about the news article
Original publication:

New class of non-covalent proteasome inhibitors: the hydroxyureas, Nerea Gallastegui, Phillip Beck, Marcelino Arciniega, Robert Huber, Stefan Hillebrand and Michael Groll, Angewandte Chemie, DOI: 10.1002/anie.201106010 Link: http://dx.doi.org/10.1002/anie.201106010
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

Online ACLS Certification

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)