RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
  Bladder
  Blood
  Bone Cancer
  Brain
  Breast Cancer
  Carcinogens
  Cervical Cancer
  Colon
  Endometrial
  Esophageal
  Gastric Cancer
  Liver Cancer
  Lung
  Nerve Tissue
  Ovarian Cancer
  Pancreatic Cancer
  Prostate Cancer
  Rectal Cancer
  Renal Cell Carcinoma
  Risk Factors
  Skin
  Testicular Cancer
  Therapy
  Thyroid
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Cancer Channel

subscribe to Cancer newsletter
Latest Research : Cancer

   EMAIL   |   PRINT
IKappa kinase lets researchers monitor molecule linked to cancer

Aug 9, 2005 - 10:50:00 PM
"One of the reviewers of our paper suggested that we should use the system to produce a full dose-response curve, which helps establish how to best use a drug,"

 
[RxPG] Scientists have used a glowing protein from fireflies to observe the activity of a molecule that is an important target for new drugs to treat cancer, autoimmune diseases and several other disorders.

The target molecule, known as IKK (for IKappa kinase), regulates processes that can trigger dramatic changes in cellular physiology. Scientists have linked these changes to many different disorders.

"Our new system allows researchers to monitor whether drugs for these conditions are hitting this exact molecular target in cell culture and laboratory animals," says senior investigator David Piwnica-Worms, M.D., Ph.D., professor of molecular biology and pharmacology and of radiology.

Piwnica-Worms and lead author Shimon Gross, Ph.D., a postdoctoral fellow, measured light from the firefly protein, luciferase, to monitor IKK activity in tumor cells and inflamed liver cells in live mice. They also showed that the technique can greatly reduce the costs of tests that establish the best dosages for drugs that target IKK. Their results appear in the August 2005 issue of Nature Methods.

IKK stands at a pivot point in the middle of an important set of linked chain reactions known as the NF-KappaB pathway. The pathway can start at many different receptors on cell surfaces; its finish changes the activity levels of varying genes. The result, according to Piwnica-Worms, is that the potential reaction patterns in the NF-KappaB pathway form an hourglass-like shape, fanning out among many options at the start, narrowing in the middle, and again fanning out among many options at the end.

"At the waist of that hourglass is IKK," he explains. "This appears to put it in a position to be the key regulator of the pathway, and that has made it a subject of great interest both from the perspective of understanding how this pathway works and from that of developing new drugs for conditions that involve this pathway. "

Piwnica-Worms' laboratory has previously developed techniques that use luciferase to monitor protein-protein interactions. Researchers can employ an instrument known as an in-vivo bioluminescence camera to take real-time measurements of light from luciferase in cell cultures and in cells within live animals.

To use the firefly protein to monitor IKK, Gross altered cell lines to genetically fuse the luciferase protein to IKB (IKappaB), the protein that comes immediately after IKK in the NF-KappaB pathway. When the pathway is enabled, IKK triggers reactions that lead to the degradation of IKB. In cells with genetically altered IKB, the attached luciferase is broken down too, meaning scientists can detect increased IKK activity via decreased light from the cells.

"This is like doing in-vivo pharmacodynamics and pharmacokinetics," says Piwnica-Worms in reference to the sciences that study the effects, distribution and dissipation of drugs. "Traditionally the only ways we could do those kinds of studies were either to test for levels of the drug in the blood or to label the drug with a radioactive tracer.

"In the case of NF-KappaB, there were also methods that monitored IKK activity via changes in the levels of gene activation at the end of the pathway," he notes. "But those took hours to days to deliver results, and our approach works continuously and in real time."

In their study, Gross and Piwnica-Worms tested the technique in live mice by transplanting genetically altered tumor cells and by using a technique that inserted the fused IKB/luciferase protein into liver cells only. They are currently working to develop a line of mice with the IKB/luciferase fusion built into its genetic code.

In addition, they showed that the system is not only helpful for learning if a drug is having the desired effect, it can also be used to fine-tune drug dosage for maximum benefit.

"One of the reviewers of our paper suggested that we should use the system to produce a full dose-response curve, which helps establish how to best use a drug," Piwnica-Worms says. "Establishing that normally takes 6 months and 300 mice. With our monitoring technique, Shimon did it in a 5-day period using 30 mice. That's going to lead to tremendous cost savings."

Because the luciferase-based monitoring system allows monitoring in live animals, Gross could perform multiple tests on the same mouse over time. He was also able to monitor the mice for individual variances that could inappropriately bias the results.



Publication: Gross S, Piwnica-Worms D. Real-time imaging of ligand-induced IKK activation in intact cells and in living mice. Nature Methods, August 2005.
On the web: Washington University School of Medicine 

Advertise in this space for $10 per month. Contact us today.


Related Cancer News


Subscribe to Cancer Newsletter

Enter your email address:


 Additional information about the news article
Funding from the National Institutes of Health.

Washington University School of Medicine's full-time and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)