RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
  Bladder
  Blood
  Bone Cancer
  Brain
  Breast Cancer
  Carcinogens
  Cervical Cancer
  Colon
  Endometrial
  Esophageal
  Gastric Cancer
  Liver Cancer
  Lung
  Nerve Tissue
  Ovarian Cancer
  Pancreatic Cancer
  Prostate Cancer
  Rectal Cancer
  Renal Cell Carcinoma
  Risk Factors
  Skin
  Testicular Cancer
  Therapy
  Thyroid
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Cancer Channel

subscribe to Cancer newsletter
Latest Research : Cancer

   EMAIL   |   PRINT
Interleukin-15 encourages CD8+ T cells to proliferate

Feb 19, 2006 - 5:31:00 PM , Reviewed by: Priya Saxena
"Those CD8+ T cells that can recognize such tumor antigens but evade thymic deletion are potentially harmful, and thus are held in check inside the body by mechanisms that make them tolerant of the protein even if it is encountered on a tumor cell"

 
[RxPG] Certain types of white blood cells assist the body in destroying cancerous tumors. Among these are CD8+ T cells. The T is for thymus, the gland near the base of the throat that both raises up and weeds out blood cells involved in immune responses.

One of the strategies being explored to eradicate established tumors is to increase the number of tumor-reactive T cells through immunization (often called a "cancer vaccine") or by growing large numbers of the patient's tumor-reactive T cells outside the body and giving them back to the patient, a method called adoptive immunotherapy.

CD8+T cells detect proteins called antigens and respond in fighting mode. If such antigens are detected on tumor cells, the CD8+ T cells punch holes in the tumor cells and destroy their contents. However, many tumor antigens are also found in normal body tissues. As a result, the thymus must get rid of most of the tumor-reactive T cells to keep the body from attacking itself.

"Those CD8+ T cells that can recognize such tumor antigens but evade thymic deletion are potentially harmful, and thus are held in check inside the body by mechanisms that make them tolerant of the protein even if it is encountered on a tumor cell," said Dr. Philip Greenberg, University of Washington (UW) professor of medicine and immunology, one of the co-authors of a Feb. 13, 2006, paper in Nature Medicine on new research in adoptive immunotherapy.

However, at times the system operates too well. Because tumor cells express higher levels of many of these antigens than do normal cells, some T cells can recognize the tumor cells and largely ignore the normal cells, but these CD8+ T cells are also held in check inside the body by mechanisms that build up their tolerance to the presence of tumor antigens. They become deficient in sending the signals that lead to tumor-cell killing.

"It is precisely these cells that might be most effective in tumor therapy, albeit with some potential toxicity," the paper said.

The researchers developed a transgenic mouse model in which the CD8+ T cells with receptors for a particular tumor antigen, also found in the mice's normal living tissue. The CD8+ T cells had become tolerant of the antigen. The CD8+ T cells were largely unresponsive, failing to proliferate or to secrete interleukin-2, a cellular product essential for maintaining a response to the tumor antigen.

However, the researchers learned through experimentation that the cells could be rescued from this tolerant state and encouraged to proliferate in laboratory beakers if they were mixed with interleukin-15. The cells are naturally exposed to lower doses of interleukin-15 inside the body, and this probably helps keep the cells alive despite their tolerant state. However, once these cells were induced to proliferate, they could be expanded to large numbers and were no longer tolerant of the tumor antigen.

It's not known precisely how proliferation rescues these cells, but the expanded tumor-reactive T cells were now effective in treating a disseminated form of leukemia in mice without damaging their livers. This suggests that the liver and other normal tissues expressing lower levels of the antigen may have their own protective mechanisms.

The research suggests that high-affinity CD8+ T cells are not necessarily deleted when they encounter the antigen as a normal protein, but rather may be rendered unable to expand under normal conditions, and that these CD8+ T cells can potentially be rescued and expanded for use in tumor immunotherapy.

The authors of the Nature Medicine article, "Interleukin-15 rescues tolerant CD8+ T cells for use in adoptive immunotherapy of established tumors," were Drs. Ryan M. Teague, Blythe D. Sather, Jillian A. Sacks, Maria Z. Haung, Michele I. Dossett, Junko Morimoto, Xiaoxio Tan, Claes Ohlen, and Philip D. Greenberg, all of the UW Department of Immunology; and Drs. Susan E. Sutton and Michael P. Cooke, of the Genomics Institute of the Novartis Research Foundation in San Diego. Teague, Dossett, Morimoto, Tan, Ohlen, and Greenberg also hold appointments in Seattle's Fred Hutchinson Cancer Research Center Program in Immunology. Greenberg's primary appointment is in the UW Department of Medicine.



Publication: Nature Medicine article, "Interleukin-15 rescues tolerant CD8+ T cells for use in adoptive immunotherapy of established tumors,"
On the web: www.uwnews.org 

Advertise in this space for $10 per month. Contact us today.


Related Cancer News


Subscribe to Cancer Newsletter

Enter your email address:


 Additional information about the news article
The authors of the Nature Medicine article, "Interleukin-15 rescues tolerant CD8+ T cells for use in adoptive immunotherapy of established tumors," were Drs. Ryan M. Teague, Blythe D. Sather, Jillian A. Sacks, Maria Z. Haung, Michele I. Dossett, Junko Morimoto, Xiaoxio Tan, Claes Ohlen, and Philip D. Greenberg, all of the UW Department of Immunology; and Drs. Susan E. Sutton and Michael P. Cooke, of the Genomics Institute of the Novartis Research Foundation in San Diego. Teague, Dossett, Morimoto, Tan, Ohlen, and Greenberg also hold appointments in Seattle's Fred Hutchinson Cancer Research Center Program in Immunology. Greenberg's primary appointment is in the UW Department of Medicine.

Grants from the National Cancer Institute of the National Institutes of Health, and from the Leukemia and Lymphoma Society, supported this research. Teague is also a recipient of a Ruth I. Kirschstein National Research Service Award.

At Fred Hutchinson Cancer Research Center, interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose, and treat cancer, HIV/AIDS, and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge, and hope to their work and to the world. For more information, please visit http://www.fhcrc.org

UW Medicine includes the University of Washington School of Medicine, Harborview Medical Center, UW Medical Center, UW Medicine Neighborhood Clinics, and the UW's involvement in the Seattle Cancer Care Alliance. UW Medicine has major academic and service affiliations with Children's Hospital and Regional Medical Center, the Fred Hutchinson Cancer Research Center, and the Veteran's Affairs Medical Centers in Seattle and Boise. Consistently among the nation's top five recipients of federal funding for biomedical research, the School of Medicine has among its more than 1,700 regular faculty five Nobel Laureates, 39 members of the National Academy of Sciences, and 38 members of the Institute of Medicine. For more information about UW Medicine, please visit http://www.uwmedicine.org/
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)