RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
  Bladder
  Blood
  Bone Cancer
  Brain
  Breast Cancer
  Carcinogens
  Cervical Cancer
  Colon
  Endometrial
  Esophageal
  Gastric Cancer
  Liver Cancer
  Lung
  Nerve Tissue
  Ovarian Cancer
  Pancreatic Cancer
  Prostate Cancer
  Rectal Cancer
  Renal Cell Carcinoma
  Risk Factors
  Skin
  Testicular Cancer
  Therapy
  Thyroid
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Cancer Channel

subscribe to Cancer newsletter
Latest Research : Cancer

   EMAIL   |   PRINT
New Hypothesis: Epigenetic changes come before carcinogenic mutations

Dec 22, 2005 - 4:21:00 PM , Reviewed by: Ankush Vidyarthi
"Greater attention should be paid to the apparently normal cells of patients with cancer or those at risk for cancer, as they might be crucial targets for epigenetic alteration and might be an important target for prevention and screening,"

 
[RxPG] A Johns Hopkins researcher, with colleagues in Sweden and at the Fred Hutchinson Cancer Research Center, suggests that the traditional view of cancer as a group of diseases with markedly different biological properties arising from a series of alterations within a cell's nuclear DNA may have to give way to a more complicated view. In the January issue of Nature Reviews Genetics, available online Dec. 21, he and his colleagues suggest that cancers instead begin with "epigenetic" alterations to stem cells.

"We're not contradicting the view that genetic changes occur in the development of cancers, but there also are epigenetic changes and those come first," says lead author Andrew Feinberg, M.D., M.P.H., King Fahd Professor of Medicine and director of the Center for Epigenetics in Common Human Disease at Johns Hopkins.

Cells affected by epigenetic changes look normal under a microscope at low levels of resolution, Feinberg says, "but if you look carefully at the genome, you find there are subtle changes." By tracking these changes, he suggests, doctors potentially could treat people before tumors develop in much the same way as cardiologists prescribe cholesterol-lowering drugs to help prevent heart disease.

Epigenetic changes -- those that don't affect the gene's sequence of DNA but change the gene in other ways -- influence a wide variety of human diseases, including cancer, birth defects and psychiatric conditions. Epigenetic alterations include the turning off or quieting of genes that normally suppress cancer and the turning on of oncogenes to produce proteins that set off malignant behavior.

Epigenetic changes are found in normal cells of patients with cancer and are associated with cancer risk, Feinberg notes.

As one example, in a study published in the Feb. 24, 2005, online version of Science, Feinberg and colleagues in the United States, Sweden and Japan reported that mice engineered to have a double dose of insulin-like growth factor 2 (IGF2) had more primitive precursor cells in the lining of the colon than normal mice. When these mice also carried a colon-cancer-causing genetic mutation, they developed twice as many tumors as mice with normal IGF2 levels. The extra IGF2 stemmed not from a genetic problem, or mutation, but from an epigenetic problem that improperly turned on the copy of the IGF2 gene that should have remained off.

Feinberg and his colleagues propose that cancers develop via a three-step process. First, there is an epigenetic disruption of progenitor cells within an organ or tissue, altered by abnormal regulation of tumor-progenitor genes. This leads to a population of cells ready to cause new growth.

The second step involves an initiating mutation within the population of epigenetically disrupted progenitor cells at the earliest stages of new cell growth, such as the rearrangement of chromosomes in the development of leukemia. This mutation normally has been considered the first step in cancer development.

The third step is genetic and epigenetic instability, which leads to increased tumor evolution.

Many of the properties of advanced tumors, including the ability to spread, or metastasize, are inherent properties of the progenitor cells that give rise to the primary tumor, Feinberg notes. These properties do not necessarily require other mutations to occur.

"Greater attention should be paid to the apparently normal cells of patients with cancer or those at risk for cancer, as they might be crucial targets for epigenetic alteration and might be an important target for prevention and screening," he says.



Publication: January issue of Nature Reviews Genetics, available online Dec. 21
On the web: Read the scientific article at Nature Journal website 

Advertise in this space for $10 per month. Contact us today.


Related Cancer News


Subscribe to Cancer Newsletter

Enter your email address:


 Additional information about the news article
Authors on the review are Andrew Feinberg of Johns Hopkins; Rolf Ohlsson of Uppsala University, Sweden; and Steven Henikoff of the Howard Hughes Medical Institute at the Fred Hutchinson Cancer Research Center.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)