RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
  Bladder
  Blood
  Bone Cancer
  Brain
  Breast Cancer
  Carcinogens
  Cervical Cancer
  Colon
  Endometrial
  Esophageal
  Gastric Cancer
  Liver Cancer
  Lung
  Nerve Tissue
  Ovarian Cancer
  Pancreatic Cancer
  Prostate Cancer
  Rectal Cancer
  Renal Cell Carcinoma
  Risk Factors
  Skin
  Testicular Cancer
  Therapy
  Thyroid
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Cancer Channel

subscribe to Cancer newsletter
Latest Research : Cancer

   EMAIL   |   PRINT
Potential mechanism for tumor growth discovered

Dec 17, 2005 - 3:45:00 PM , Reviewed by: Priya Saxena
"We may have found how a stem cell without any pre-existing mutation can become a cancer stem cell"

 
[RxPG] Researchers at Columbia University Medical Center have identified an inherent feature of stem and progenitor cells that may promote initiation and progression of cancerous tumors.

In a study published in the December issue of Cancer Cell, the team showed that stem and progenitor cells are susceptible to a specific error during cell division that can result in severe chromosomal defects. This susceptibility may explain how a tumor-initiating cell, also known as a cancer stem cell, arises from a normal cell. It may also explain how a cancer stem cell acquires additional mutations that increase tumor malignancy.

According to Timothy Bestor, Ph.D., and Marc Damelin, Ph.D., of Columbia University College of Physicians and Surgeons, understanding the nature of cancer stem cells could result in new therapies that specifically target those cells, which are thought to be the driving force of tumor progression.

The process of cell division is closely monitored by the cell, because a mistake can result in a cancer-causing chromosome abnormalities. Typically during cell division, cells monitor quality control with a series of checkpoints. One such checkpoint confirms that the cell's chromosomes have been disentangled before they are to be pulled apart in mitosis, to ensure that the chromosomes will be separated appropriately.

The Columbia researchers found, however, that stem and progenitor cells are deficient in this checkpoint and will divide even if the chromosomes are entangled. All three cell types tested by the researchers - mouse embryonic stem cells, mouse neural progenitor cells, and human bone marrow progenitor cells - attempted cell division with entangled chromosomes. The researchers think it likely that cancer stem cells, which closely resemble normal stem cells, have the same deficiency.

"The failure to untangle before dividing undoubtedly will lead to chromosomal defects," said Dr. Bestor, professor of genetics and development and the study's principal investigator. "Surviving cells may end up with too many chromosomes, they may lose chromosomes, or some chromosomes may get rearranged." These same types of chromosomal defects are the hallmark of cancer cells, and there are chromosomal abnormalities in all types of cancer.

"We may have found how a stem cell without any pre-existing mutation can become a cancer stem cell," said Dr. Damelin, a CUMC postdoctoral fellow of the Damon Runyon Cancer Research Foundation and the lead author on the study.

The research also points to potential obstacles involved with stem cell therapies. In the lab, stem cells are pushed to divide many times more than they normally would divide in an organism. The more stem cells divide, the more likely they are to acquire abnormal chromosome constitutions. Further research will be necessary to understand and address these risks.



Publication: December issue of Cancer Cell
On the web: www.cumc.columbia.edu 

Advertise in this space for $10 per month. Contact us today.


Related Cancer News


Subscribe to Cancer Newsletter

Enter your email address:


 Additional information about the news article
Columbia University Medical Center provides international leadership in pre-clinical and clinical research, in medical and health sciences education, and in patient care. The medical center trains future leaders in health care and includes the dedicated work of many physicians, scientists, nurses, dentists, and public health professionals at the College of Physicians & Surgeons, the School of Dental & Oral Surgery, the School of Nursing, the Mailman School of Public Health, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Columbia University Medical Center researchers are leading the discovery of novel therapies and advances to address a wide range of health conditions. http://www.cumc.columbia.edu
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)