RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
  Cloning
  Genetic Disorders
   Brachydactyly
   Fragile X Syndrome
   Huntington's
   MSUD
   Progeria
  X Chromosome
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Research Article
Huntington's Channel

subscribe to Huntington's newsletter
Latest Research : Genetics : Genetic Disorders : Huntington's

   EMAIL   |   PRINT
Link between Huntington's and abnormal cholesterol levels in brain discovered

Dec 3, 2006 - 3:10:30 PM , Reviewed by: Himanshu Tyagi
"Our discovery that the mutant Huntington's disease protein derails the cholesterol delivery system and causes cholesterol accumulation in neurons provides us with key results and solid clues to the mechanism of this disease"

 
[RxPG] Mayo Clinic researchers have discovered a protein interaction that may explain how the deadly Huntington's disease affects the brain. The findings, published in and featured on the cover of the current issue of Human Molecular Genetics, show how the mutated Huntington's protein interacts with another protein to cause dramatic accumulation of cholesterol in the brain.

"Cholesterol is essential for promoting the connection network among brain cells and in maintaining their membrane integrity. Both the level of cholesterol and its delivery to the proper locations in the cell are essential for the survival of neurons," explains Mayo Clinic molecular biologist Cynthia McMurrary, Ph.D.

"Our discovery that the mutant Huntington's disease protein derails the cholesterol delivery system and causes cholesterol accumulation in neurons provides us with key results and solid clues to the mechanism of this disease," says Dr. McMurray. "Fully understanding the mechanism of toxicity is the key to developing treatments."

Huntington's disease -- sometimes called Huntington's chorea or St. Vitus' dance -- is a progressive, degenerative condition that causes nerve cells in the brain to waste away. Symptoms include uncontrolled movements, emotional disturbances and mental deterioration.

The mutant protein of Huntington's attacks the railroad system of brain cells and impairs transport of essential materials required for neurons to function. When this transportation system goes awry in the parts of the brain affected in Huntington's disease, motor skills, cognitive skills and even speech can be affected. A person cannot move without shaking, and physical control gradually deteriorates, often with accompanying personality changes, depression and increased risk of suicide. Those who have Huntington's commonly die from complications of the disease, such as falls or infections.
Link between Huntington's and abnormal cholesterol levels in brain discovered
Mouse control neuron (left) and neuron showing cholesterol accumulation in Huntington's disease.

Approximately 30,000 Americans have Huntington's disease. Another 150,000 carry the gene and have a 50 percent risk of passing it on to their children. The disease is easily diagnosed by a blood test, but symptoms usually don't appear until middle age.

Their findings, say the researchers, provide the first direct link between the Huntington's protein and the protein that controls capture and trafficking inside the cell. Their research suggests a possible means by which Huntington's disease functions.

Because no one knows how the disease is incurred or spreads, this new information is critical and establishes a clear path for investigations to move forward.

The Mayo researchers observed the abnormal accumulation of cholesterol in cultured neuronal cells in the laboratory and in the brains of animal models. They found that this happens only when the mutant Huntington's protein is expressed together with the molecule, caveolin-1. Caveolin-1 is the major structural protein of small vesicles called caveolae, which capture cholesterol and move it in and out of the neuronal membranes. When the researchers "knocked out" expression of caveolin, the neurons expressing mutant Huntington's protein stopped accumulating cholesterol.



Publication: The findings are published in and featured on the cover of the current issue of Human Molecular Genetics
On the web: www.mayoclinic.org 

Advertise in this space for $10 per month. Contact us today.


Related Huntington's News
Link between Huntington's and abnormal cholesterol levels in brain discovered
PARP1 inhibitors can protect Huntington's disease affected cells from damage
Gene therapy protects neurons in Huntington's disease
Huntingtin cleavage is caused by caspase-6
Clioquinol, an antibiotic shows new promise for Huntington's Disease
Potential therapeutic target for Huntington's disease

Subscribe to Huntington's Newsletter

Enter your email address:


 Additional information about the news article
Others team members include key researcher Eugenia Trushina, Ph.D.; together with Raman Deep Singh, Ph.D.; Roy B. Dyer, Ph.D.; Sheng Cao, M.D.; Vijay H. Shah, M.D.; and Richard E. Pagano, Ph.D.; all of Mayo Clinic; and Robert G. Parton, Ph.D., of the University of Queensland. The research was supported by the Hereditary Disease Foundation, the National Institutes of Health, the American Heart Association and Mayo Clinic.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)