RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
  Bladder
  Blood
  Bone Cancer
  Brain
  Breast Cancer
  Carcinogens
  Cervical Cancer
  Colon
  Endometrial
  Esophageal
  Gastric Cancer
  Liver Cancer
  Lung
   Small Cell Carcinoma
  Nerve Tissue
  Ovarian Cancer
  Pancreatic Cancer
  Prostate Cancer
  Rectal Cancer
  Renal Cell Carcinoma
  Risk Factors
  Skin
  Testicular Cancer
  Therapy
  Thyroid
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Lung Channel

subscribe to Lung newsletter
Latest Research : Cancer : Lung

   EMAIL   |   PRINT
Key to lung cancer chemotherapy resistance revealed

Oct 11, 2006 - 5:36:00 AM , Reviewed by: Rashmi Yadav
"What we're seeing is that lung cancer cells recruit and distort NRF2 and KEAP1 expression to help tumor cells evade the toxic effects of chemotherapy,"

 
[RxPG] Scientists at Johns Hopkins have discovered how taking the brakes off a "detox" gene causes chemotherapy resistance in a common form of lung cancer.

Products made by a gene called NRF2 normally protect cells from environmental pollutants like cigarette smoke and diesel exhaust by absorbing the materials and pumping them out of the cell. Another gene called KEAP1 encodes products that stop this cleansing process. But lung cancer cells sabotage the expression of these same genes to block assault from chemotherapy drugs.

"What we're seeing is that lung cancer cells recruit and distort NRF2 and KEAP1 expression to help tumor cells evade the toxic effects of chemotherapy," says Shyam Biswal, Ph.D., associate professor at the Johns Hopkins Bloomberg School of Public Health and Kimmel Cancer Center, who published results of cell culture studies in the October 3, 2006 issue of PLoS Medicine.

Past studies have shown that NRF2 detoxifies cells by directing proteins to absorb and pump out pollutants and chemicals. The NRF2 gene makes a "trigger" protein which starts the production of other proteins and enzymes that sweep the cell clear of toxins. To halt the detox process, proteins manufactured by KEAP1 bind to the NRF2 triggers tagging them for destruction. In cancer cells, NRF2 activity runs amok, sweeping away all cellular toxins, including chemotherapy agents.

Biswal says that blocking NRF2 activity could improve the effectiveness of standard chemotherapy drugs, particularly platinum-based compounds widely used for lung cancer.

In Biswal's study, half of 12 lung cancer cell lines and 10 of 54 tissue samples from non-small cell lung cancer patients had mutations in the KEAP1 gene rendering it inactive and unable to keep NRF2 activity in check. In addition, half of the tissue samples were missing one copy of the KEAP1 gene - cells usually have two copies of each gene. No missing genes or mutations were observed in normal lung tissues from the same patients.

NRF2 activity along with its cleansing proteins and enzymes were higher in tumor samples than normal cells, according to the researchers. Their cell culture tests also show that cancer cells with KEAP1 mutations are more resistant to chemotherapy drugs than normal lung cells.

Tumor samples with normal KEAP1 genes also show increased levels of NRF2 and its enzymes, suggesting other ways of dismantling KEAP1, such as splicing the gene to make a shortened, ineffective protein, he said.



Publication: October 3, 2006 issue of PLoS Medicine
On the web: www.hopkinsmedicine.org 

Advertise in this space for $10 per month. Contact us today.


Related Lung News
Tamoxifen reduces mortality rate in lung cancer
Lung Cancer risk greater in tuberculosis patients
Genes to identify patients who would benefit from chemotherapy
First-line treatment with erlotinib improved progression-free survival in advanced lung cancer
Genetic variation-Lung cancer drugs work better in the Japanese than in the Americans
Ireland Cancer Center researchers advance lung cancer treatment
Lung cancer screening regimen provides opportunity for cure
MEK inhibitors may be beneficial for lung cancer containing mutations in the BRaf gene
Potential solution to cetuximab-resistance in lung cancers
Gene Expression Profiling Not Quite Perfected in Predicting Lung Cancer Prognosis

Subscribe to Lung Newsletter

Enter your email address:


 Additional information about the news article
The researchers plan to confirm their findings with a larger set of samples and then to screen for appropriate drugs. Funding for the study was provided by the National Cancer Institute Lung SPORE (Specialized Program of Research Excellence), National Heart Lung and Blood Institute, National Institute of Environmental Health Sciences Center, National Institute of Health, and the Flight Attendant Medical Research Institution.

Co-authors include Anju Singh, Vikas Misra, Rajesh K Thimmulappa, Hannah Lee, Stephen Ames, Mohammad O. Hoque, James G. Herman, Stephen B. Baylin, David Sidransky, Edward Gabrielson and Malcolm Brock from Johns Hopkins.

1. Nuclear factor erythroid-2 related factor 2 (NRF2) 2. Kelch-like ECH-associated protein 1 (KEAP1)
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)