RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
 Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Medical News Channel

subscribe to Medical News newsletter
Medical News

   EMAIL   |   PRINT
UH Professor receives $2.5 million in grants to continue learning, memory research

Feb 19, 2005 - 6:45:00 PM
"There is a lot of research going on in memory," Eskin said. "How do we remember things given that we don't have a camera in our brain to record events? What changes take place in our brains that allow us to remember? These grants are about fundamental learning and memory and about modulation of memory."

 
[RxPG] If you crammed for tests by pulling 'all nighters' in school, ever wonder why your memory is now a bit foggy on what you learned? A University of Houston professor may have the answer with his research on the role of circadian rhythms in long-term learning and memory.

Arnold Eskin, the John and Rebecca Moores Professor of Biology and Biochemistry at UH, was recently awarded two grants totaling $2,472,528 from the National Institutes of Health (NIH) to continue pursuing his investigations of memory formation and the impact of the biological clock on learning and memory.

Scientists have known for a while that the brain's biological (or circadian) clock influences natural body cycles, such as sleep and wakefulness, metabolic rate and body temperature. New research from Eskin suggests the circadian clock also may regulate the formation of memory at night. This new research focuses on "Circadian Modulation of Long-term Memory Formation" and "Long-term Regulation of Glutamate Uptake in Aplysia," with NIH funding to be disbursed over four years.

"There is a lot of research going on in memory," Eskin said. "How do we remember things given that we don't have a camera in our brain to record events? What changes take place in our brains that allow us to remember? These grants are about fundamental learning and memory and about modulation of memory."

For the grant on circadian modulation of long-term memory formation, Eskin will continue studies based on his data that reveal the circadian clock modulates several forms of long-term memory in the marine snail Aplysia.

These studies involved experiments on the defensive reflexes and feeding responses of Aplysia. Eskin's results showed that Aplysia form long-term memory when they are trained during the day but not when they are trained at night. However, short-term memory of the same behaviors is formed equally well during the day and night, which might explain why all-night cram sessions may have helped you get through certain classes in school, but did not leave you with enough of a lasting impression to become part of your long-term store of knowledge.

"Somewhere in the molecular circuit, in the neural circuit in the brain, the biological clock is shutting that circuit off at a particular time of night. It's shutting molecules down so that long-term memory can't happen," Eskin said.

Lisa Lyons, a research assistant professor at UH, is the primary investigator on this grant and is already investigating molecules involved in memory formation that might be activated during the day but not at night. NIH funding will help advance the pursuit of this line of research.

For the grant on long-term regulation of glutamate uptake in Aplysia, Eskin will focus on the transmitter substance glutamate, which is involved in memory formation.

"The formation of memory happens at places in the brain called synapses, where cells 'talk' to one another through the release of chemicals called transmitter substances," Eskin said. "In order for transmitters to work, once they are released they have got to be cleared away so that others can subsequently act. So, there are not only important mechanisms to release the transmitters, but also mechanisms to get rid of them, and these are called reuptake systems."

Eskin is studying glutamate reuptake and glutamate transport to understand the mechanism or change that takes place at the synapses of nerve cells (or neurons) that enables people to remember. In previous research, Eskin found that glutamate transport molecules, which act as the brain's cleaning crew during learning and memory formation, actually increase once the long-term memory-forming process begins. Deficiencies in these glutamate transporters that affect the strength of connections among the neurons associated with memory may explain why memory lapses such as forgetting where you last set down your keys occur.

"This research will provide significant information toward understanding memory and thus diseases that affect memory," Eskin said.

With the potential to shed light upon neurodegenerative diseases such as Alzheimer's – marked by a loss of brain function due to the deterioration of neurons – studying these nerve cells could one day take this research from helping you be better able to find your glasses to providing relief from a debilitating illness.

"At the end of the day, we can't make memory better or improve it unless we understand how memory works and is modulated," he said. "That's what this research is all about."

He is currently completing the last year of another NIH-funded grant on "Glutamate Transport Regulation and Synaptic Plasticity" that complements these two new grants, but investigates the role of glutamate uptake in associative learning in mammals. This research project on mammals represents a great example of traslational research in which basic findings in a simple system (i.e. Aplysia) were quickly applied to a higher organism (i.e. mammals). They found that glutamate transport increased in the brains of mammals during learning as also found in Aplysia. (See related release at http://www.uh.edu/admin/media/nr/2002/032002/eskinlearning.html.)

Coming to UH more than 25 years ago, Eskin guided the merger of two departments into what is now the Department of Biology and Biochemistry in the College of Natural Sciences and Mathematics. As department chair from 1994 to 2000, Eskin tripled research grants to approximately $6 million per year and developed the department's research foci of neuroscience, the biological clocks and infectious disease. The author or co-author of more than 150 publications, he has received numerous honors, including the Esther Farfel Award, the university's highest faculty honor. He is the only faculty member to receive both the Farfel Award and the Moores Professorship in the same year. Eskin earned his bachelor's degree in physics from Vanderbilt University and his doctorate in zoology from the University of Texas.




Publication: Eskin, 713-743-8381; [email protected]
On the web: Web page: http://nsm.uh.edu/faculty.php?155622-961-5=aeskin 

Advertise in this space for $10 per month. Contact us today.


Related Medical News News
Gogoi announces Rs.5 lakh each to HIV victims, four officials suspended
Woman's complain against hospital dismissed
Apollo Hospital offers senior citizens only OPD
New mental health bill bans electric shocks, gives right to treatment
Caution: Eating Goan frog legs could cause cancer
Assam town protests blood bank's HIV 'mistake'
'Collaboration key to addressing problems of disabled'
Mumbai gets special cancer centre for women
Assam blood bank accused of spreading HIV virus
Re-build society with safe blood transfusion: A.K. Walia

Subscribe to Medical News Newsletter

Enter your email address:


 Additional information about the news article
UH's Biological Clocks Program is one of the world's leading centers for circadian rhythms research, with five laboratories and a team of more than 30 scholars. In addition to Eskin, the group is led by four other tenured faculty members in the biology and biochemistry department – Associate Professor Gregory M. Cahill, Professor Stuart Dryer, Professor Paul Hardin and Professor Michael Rea. For more information on the biological clocks program at UH, visit http://www.bchs.uh.edu/research_clocks.htm.

About the University of Houston
The University of Houston, Texas' premier metropolitan research and teaching institution, is home to more than 40 research centers and institutes and sponsors more than 300 partnerships with corporate, civic and governmental entities. UH, the most diverse research university in the country, stands at the forefront of education, research and service with more than 35,000 students.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)