RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
  Cataract
  Cornea
  Retina
   ARMD
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Retina Channel

subscribe to Retina newsletter
Latest Research : Ophthalmology : Retina

   EMAIL   |   PRINT
Master Proteins Dictate Retinal Differentiation Timetable

Aug 16, 2006 - 8:41:00 AM , Reviewed by: Priya Saxena
Altogether, these results indicate that a post-transcriptional mechanism regulates when these proteins are expressed and in which cells.

 
[RxPG] The embryonic construction of the vertebrate retina is a highly ordered affair. Following a precise timetable, six different specialized cell types emerge from a mass of identical, proliferating cells. The process of retinal cell differentiation, when so-called progenitor cells stop dividing and choose among the six fates, depends primarily on homeobox genes, major regulators of embryonic patterning. How these genes control the timing of retinal cell differentiation has remained an open question—until now.

In a new study, Sarah Decembrini, Federico Cremisi, and colleagues show that three homeobox genes work in conjunction with a cellular timepiece that determines the sequential emergence of distinct cell types. Surprisingly, the schedule of both homeobox gene expression and retinal cell differentiation is controlled by the translation, rather than by the transcription, of the genes.

Retinal cells transform light signals into visual information for further processing in the brain. After light stimulates the rod and cone photoreceptors, visual signals travel to horizontal and bipolar cells, which in turn interface with amacrine cells. Ganglion cells, which then relay these signals to the brain, are the first-born cells—that is, the first to exit the cell cycle and stop dividing. Though their birthdays vary somewhat by species, the horizontal, cone, and amacrine cells come next, then the rod and bipolar cells.

Decembrini et al. suspected that cell identity may be tied to cell cycle progression because different retinal cell types are produced when cell cycle length is manipulated. To test this hypothesis, they studied a subset of homeobox genes, including otx5, which supports photoreceptor differentiation, and vsx1 and otx2, which promote bipolar differentiation. Working with Xenopus frogs, a classic developmental biology model, they found that each of the homeobox genes was expressed in sequence, in different cells. By mid-stage retinal development (stage 34), the messenger RNA (mRNA) transcripts of all three genes were expressed, but only Xotx5 proteins were detected. Xvsx1 and Xotx2 were detected at stages 37 and 38-39, respectively. By stage 42, Xotx2 and Xvsx1 proteins were observed in bipolar cells, while Xotx5b was detected only in photoreceptors. These results indicated that the genes had been regulated after transcription and were expressed as proteins after cells exited the cell cycle.

What controlled the genes’ translation into protein? To find out, the researchers linked a specific sequence of each homeobox gene—called the three prime untranslated region (3' UTR)—with the gene encoding green fluorescent protein (GFP). These GFP sensors indicated how the 3' UTR affects expression of the gene. They delivered the DNA of sensors into embryos at an early stage of retinal development (stage 17-18), using a technique called lipofection. GFP proteins were detected only in photoreceptors (the Xotx5b sensor) and bipolar cells (Xvsx1 and Xotx2 sensors). Thus, the 3' UTRs of these genes had blocked GFP translation into protein in all but late-developing retinal cells. The 3' UTRs were able to do this because they contain sequences (called cis-regulatory sequences) that can interact with microRNAs—a class of gene-repressing RNAs that bind to complementary sequences of RNA and mediate mRNA destruction. (Future experiments must confirm whether these sequences do in fact interact.) The GFP sensors were detected at the same stages as their corresponding homeobox proteins had been in the previous experiments. This timing, it turned out, coincided with the birthdates of the photoreceptors and bipolar cells.

The correlation between the timing of protein expression and the photoreceptor and bipolar cell birthdates prompted the researchers to examine the effect of cell cycle progression on protein translation. By blocking cell cycle progression with drugs that inhibit DNA replication, they found that Xotx5b, Xvsx1, and Xotr2 require progressively longer cell cycles for efficient translation. And the attenuated production of Xotx5b and Xvsx1 proteins after cell cycle inhibition, they found, reduced the number of photoreceptor and bipolar cells—an effect that was reversed when the proteins were overexpressed, supporting the connection between protein expression and cell identity.

Altogether, these results indicate that a post-transcriptional mechanism regulates when these proteins are expressed and in which cells. This mechanism operates in synch with a cellular clock that measures cell cycle length to generate the later developing photoreceptors and bipolar cells. The next step will be to determine how these findings apply to other genes controlling retinal cell fate, and then to identify the molecular mechanisms driving translational inhibition.



Publication: Gross L (2006) Master Proteins Dictate Retinal Differentiation Timetable. PLoS Biol 4(9): e293
On the web: Read Research Article at PLoS Biology 

Advertise in this space for $10 per month. Contact us today.


Related Retina News
Deficiency of the Dicer enzyme in retinal cells linked to age-related macular degeneration
Quit smoking to save your eyes
Post Menopausal Hormones - reduces risk of macular degeneration
New Findings Indicate That Eyes Can Regenerate Damaged Retinas
Higher fish consumption have a reduced risk of advanced age-related macular degeneration
Genetics key factor in retinopathy of prematurity (ROP)
HTRA1 gene linked to aggressive 'wet' age-related macular degeneration
Master Proteins Dictate Retinal Differentiation Timetable
Yellow plant pigments lutein and zeaxanthin reduce risk of age-related macular degeneration
Objective way to diagnose diseases of colour perception

Subscribe to Retina Newsletter

Enter your email address:


 Additional information about the news article
Written By Liza Gross

Published: August 15, 2006

DOI: 10.1371/journal.pbio.0040293

Copyright: © 2006 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)