RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
  Proteins
   WNT
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
WNT Channel

subscribe to WNT newsletter
Latest Research : Biochemistry : Proteins : WNT

   EMAIL   |   PRINT
Ryk, Wnts and Frizzled3 receptors in neuronal regeneration - Study

Aug 15, 2005 - 8:49:00 PM , Reviewed by: Priya Saxena
"This is remarkable example of the efficiency of nature," said Yimin Zou, Ph.D., assistant professor of neurobiology, pharmacology and physiology at the University of Chicago.

 
[RxPG] The same family of chemical signals that attracts developing sensory nerves up the spinal cord toward the brain serves to repel motor nerves, sending them in the opposite direction, down the cord and away from the brain, report researchers at the University of Chicago in the September 2005 issue of Nature Neuroscience (available online August 14). The finding may help physicians restore function to people with paralyzing spinal cord injuries.

Growing nerve cells send out axons, long narrow processes that search out and connect with other nerve cells. Axons are tipped with growth cones, bearing specific receptors, which detect chemical signals and then grow toward or away from the source.

In 2003, University of Chicago researchers reported that a gradient of biochemical signals known as the Wnt proteins acted as a guide for sensory nerves. These nerves have a receptor on the tips of their growth cones, known as Frizzled3, which responds to Wnts.

In this paper, the researchers show that the nerves growing in the opposite direction are driven down the cord, away from the brain, under the guidance of a receptor, known as Ryk, with very different tastes. Ryk sees Wnts as repulsive signals.

"This is remarkable example of the efficiency of nature," said Yimin Zou, Ph.D., assistant professor of neurobiology, pharmacology and physiology at the University of Chicago. "The nervous system is using a similar set of chemical signals to regulate axon traffic in both directions along the length of the spinal cord."

It may also prove a boon to clinicians, offering clues about how to grow new connections among neurons to repair or replace damaged nerves. Unlike many other body components, damaged axons in the adult spinal cord cannot adequately repair themselves. An estimated 250,000 people in the United States suffer from permanent spinal cord injuries, with about 11,000 new cases each year.

This study focused on corticospinal neurons, which control voluntary movements and fine-motor skills. These are some of the longest cells in the body. The corticospinal neurons connect to groups of neurons along the length of spinal cord, some of which reach out of the spinal cord. They pass out of the cord between each pair of vertebrae and extend to different parts of the body, for example the hand or foot.

Zou and colleagues studied the guidance system used to assemble this complex network in newborn mice, where corticospinal axon growth is still underway. Before birth, axons grow out from the cell body of a nerve cell in the motor cortex. The axons follow a path back through the brain to the spinal cord.

By the time of birth, the axons are just growing into the cord. During the first week after birth they grow down the cervical and thoracic spinal cord until they reach their proper position, usually after seven to ten days.

From previous studies, Zou and colleagues knew that a gradient of various Wnt proteins, including Wnt4, formed along the spinal cord around the time of birth. Here they show that two other proteins, Wnt1 and Wnt5a are produced at high concentrations at the top of the cord and at consecutively lower levels farther down.

They also found that motor nerves are guided by Wnts through a different receptor, called Ryk, that mediates repulsion by Wnts. Antibodies that blocked the Wnt-Ryk interaction blocked the downward growth of corticospinal axons when injected into the space between the dura and spinal cord in newborn mice.

This knowledge, coupled with emerging stem cell technologies, may provide the most promising current approach to nervous system regeneration. If Wnt proteins could be used to guide transplanted nerve cells -- or someday, embryonic stem cells -- to restore the connections between the body and the brain, "it could revolutionize treatment of patients with paralyzing injuries to these nerves," Zou suggests.

"Although half the battle is acquiring the right cells to repair the nervous system," he said, "the other half is guiding them to their targets where they can make the right connections."

"Understanding how the brain and the spinal cord are connected during embryonic development could give us clues about how to repair damaged connections in adults with traumatic injury or degenerative disorders," Zou added.



Publication: September 2005 issue of Nature Neuroscience (available online August 14)
On the web: University of Chicago Medical Center 

Advertise in this space for $10 per month. Contact us today.


Related WNT News


Subscribe to WNT Newsletter

Enter your email address:


 Additional information about the news article
The National Institute of Neurological Disorders and Stroke, the Schweppe Foundation, the Robert Packard ALS Center at Johns Hopkins, the University of Chicago Brain Research Foundation and the Jack Miller Peripheral Neuropathy Center supported this study.

Additional authors include Yaobu Liu, Jun Shi. Chin-Chun Lu, and Anna Lyuksyutova of the University of Chicago, and Zheng-Bei Wang and Xuejun Song of the Parker College Research Institute in Dallas Texas.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)