RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
  Bladder
  Blood
  Bone Cancer
  Brain
  Breast Cancer
  Carcinogens
  Cervical Cancer
  Colon
  Endometrial
  Esophageal
  Gastric Cancer
  Liver Cancer
  Lung
  Nerve Tissue
  Ovarian Cancer
  Pancreatic Cancer
  Prostate Cancer
  Rectal Cancer
  Renal Cell Carcinoma
  Risk Factors
  Skin
  Testicular Cancer
  Therapy
   Pharmacotherapy
   Radiotherapy
   Vaccination
  Thyroid
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Pharmacotherapy Channel

subscribe to Pharmacotherapy newsletter
Latest Research : Cancer : Therapy : Pharmacotherapy

   EMAIL   |   PRINT
Celecoxib able to control chemotherapy resistant tumor cells

Aug 30, 2005 - 7:23:00 PM
"Amazingly these growth-inhibitory effects take place even in cells that otherwise are highly resistant to the inhibitory effects of various anti-cancer drugs that are commonly used in the clinic for the treatment of cancer patients."

 
[RxPG] A close structural relative of the celebrated COX-2 inhibitor celecoxib (brand name: Celebrex) is a potent tumor fighter, able to wipe out tumor cells that are resistant to conventional chemotherapies, according to an interdisciplinary team of researchers from the University of Southern California.

Led by Axel H. Schšnthal, associate professor of molecular microbiology and immunology at the Keck School of Medicine of USC, the researchers have been studying the effects of an analog of celecoxib that does not have its cousin's celebrated ability to block the activity of cyclooxygenase-2 (COX-2), an enzyme integral to the inflammatory process. Nonetheless, the scientists showed that the analog manages to halt tumor growth even in drug-resistant lines of multiple myeloma cells. (Multiple myeloma is an incurable cancer of the plasma cell; plasma cells are components of the blood, and play a key role in the body's immune response.)

The work was published in the most recent online edition of the journal Blood, and will be appearing in an upcoming print edition of the journal.

Most of the attention celecoxib has received in recent years has been as a result of its anti-inflammatory effects and, most recently, the withdrawal of the two other main COX-2 inhibitors on the market-Vioxx and Bextra-after data unearthed linking them to an increased risk of stroke in some patients. (Celebrex remains on the market, but now carries a "black box" warning about the potential for cardiovascular side effects.)

But the truth is, celecoxib is more than just an anti-inflammatory agent. Over the past couple of years, researchers have begun to recognize that cyclooxygenase-2 can sometimes play a role in cancer; for instance, they've shown that the enzyme is overexpressed by multiple myeloma cells, and that this is a predictor of a poor outcome for the patient. Thus, it seemed clear that a cylooxygenase inhibitor might be able to turn things around.

It did. In several laboratory studies, the COX-2 inhibitor celecoxib showed an ability to target several of the growth pathways; further studies, including some performed by Schšnthal and colleagues, showed that celecoxib's anticancer activity appeared to be independent from its COX-2 inhibition. Schšnthal's team then went on to show that the analog in question-2,5-dimethyl-celecoxib or DMC-retains the ability to stop cancer growth despite the fact that it doesn't inhibit the activity of COX-2.

"Amazingly," the researchers noted in the Blood paper, "these growth-inhibitory effects take place even in cells that otherwise are highly resistant to the inhibitory effects of various anti-cancer drugs that are commonly used in the clinic for the treatment of cancer patients."

The fact that DMC is as potent-or, says Schšnthal, even more potent, even at lower doses-than celecoxib despite having no ability to inhibit COX-2 is important, the researchers say, especially in light of the recently revealed side effects of COX-2 inhibitory drugs. "Bearing in mind that substantially increased daily dosages of these drugs are considered-and probably necessary-for cancer prevention or cancer therapy, the increased risk of cardiovascular failure is of considerable concern," they wrote in the Blood paper. But because the unwanted cardiovascular side effects of celecoxib are connected to its ability to inhibit COX-2, Schšnthal speculates that DMC, which lacks that ability, might not cause similar problems.

Schšnthal notes that his research points to celecoxib in particular as being unique in its ability to slow or stop tumor growth. All the COX-2 inhibitors are able to block the activity of cyclooxygenase-2, he says, but only celecoxib and its analogs seem able to arrest growth and induce cellular suicide (apoptosis), even in cells that don't produce COX-2.

What does all this mean for the treatment of multiple myeloma? It will be important to extend these current results and determine whether these drugs achieve similar anti-tumor effects in myeloma patients, Schšnthal says. "Curing laboratory mice of multiple myeloma isn't good enough," he adds. "But proof of principle has been established with this work, so our next goal will be to evaluate DMC in myeloma patients, perhaps in combination with other drugs.



Publication: The work was published in the most recent online edition of the journal Blood, and will be appearing in an upcoming print edition of the journal.
On the web: University of Southern California 

Advertise in this space for $10 per month. Contact us today.


Related Pharmacotherapy News
Anthracycline induced heart damage can be reduced by prolonging infusion time
Genomic signatures to guide the use of chemotherapeutics
CDK2/FOXO1 as drug target to Prevent Tumors
Gleevec can be toxic to the heart
AS101 protects the testis from the effects of paclitaxel
Fibrasorb - New device that could cut chemotherapy deaths
Serendipity versus planning - cancer drugs of the future?
Sunitinib Approved for Gastrointestinal Stromal Tumors (GIST) and Kidney Cancer
Celecoxib able to control chemotherapy resistant tumor cells
Inhibiting EAT-2 with medications could boost NK cell activity

Subscribe to Pharmacotherapy Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)