RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
  Diabetes
   Insulin Resistance
   NIDDM
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Diabetes Channel

subscribe to Diabetes newsletter
Latest Research : Endocrinology : Diabetes

   EMAIL   |   PRINT
Boosting cellular signals may lead to new treatments for diabetes

Feb 11, 2005 - 4:27:00 PM

 
[RxPG] Using a revolutionary technique to turn off chemical signals inside the cell, scientists at Joslin Diabetes Center have discovered that the different metabolic abnormalities present in type 2 diabetes can be caused by knocking out two key signals in liver cells. Their findings in mice may someday lead to strategies in humans to boost these two different signals, providing a powerful new way to treat the different metabolic components present in the most common form of diabetes.

"By lowering the level of two key insulin signaling proteins in liver cells, we began to uncover just how complex type 2 diabetes and the related metabolic syndrome are," said principal investigator C. Ronald Kahn, M.D., President of Joslin Diabetes Center and the Mary K. Iacocca Professor of Medicine at Harvard Medical School. "Both protein signals needed to be knocked out at the same time to create the full diabetic syndrome, while depleting just one or the other caused only either the glucose or the lipid abnormalities associated with diabetes. Thus, these two pathways complement each other, each controlling a part of the metabolism that is disrupted in type 2 diabetes or the metabolic syndrome."

Others involved in the study were lead author Cullen Taniguchi, M.D., Ph.D., and former Joslin researcher Kohjiro Ueki, M.D., Ph.D., now at the University of Tokyo. Published Feb. 10 in the online edition of the Journal of Clinical Investigation, the study sheds new light on a complex question: How do cells normally process the hormone insulin and what goes wrong in diabetes?

An estimated 18 million Americans have type 2 diabetes, and about one-third do not even know they have the disease. In this disorder, the body does not make enough insulin or resists its effect, a phenomenon called insulin resistance. Without effective insulin, cells throughout the body are unable to convert sugar in the bloodstream to energy, resulting in chronic fatigue, thirst and other symptoms of high blood sugar. People with diabetes also have abnormalities in lipid metabolism and are two to four times more likely to have cardiovascular disease, and they run a higher risk of damage to nerve, eye, kidney and other body tissues.

Previous discoveries by Dr. Kahn's research team provided insight about the pathway that insulin takes to stimulate cells. Insulin docks at a receptor site at the cell membrane. Once this site is activated, chemical signals pass to other proteins inside the cell, including insulin-receptor substrates (IRS). These spark a chain of other reactions. Ultimately the cell's energy machinery is turned on.

The Joslin study focused on two of these early intracellular signaling proteins, IRS-1 and IRS-2, and especially their role in the liver, which is a key organ for both glucose and lipid metabolism. If turned off, how would that affect the onset of type 2 diabetes? And if an effect occurred, was it causative or something that just happens along the way?

The researchers needed a technique to turn off the two substrates in a living organism in just one tissue at a time. Previous studies had shown that mice bred without the genes for either IRS-1 didn't develop diabetes, while those lacking IRS-2 developed diabetes, but this was primarily because of a defect in the beta cell, so evaluating the role of the liver was impossible.

To solve this dilemma, Dr. Kahn's team used an elegant new genetic tool in a disease study. The technique allows researchers to turn off specific signals with a virus that targets specific cell types with a kind of RNA that would interfere with the liver cells' ability to make IRS-1 or IRS-2. The liver is the focus of considerable diabetes research because it is a major controller of metabolic functions, including those that regulate blood glucose and fat metabolism.

In the study, the effect of the RNA interference lasted one to two weeks, reducing IRS-1 and IRS-2 by up to 80 percent. By designing separate experiments, the researchers found that each substrate acts on a different part of metabolism. Low levels of IRS-1 drive cells to make more glucose, causing blood sugar to rise. Low levels of IRS-2 are linked to higher levels of blood fats such as triglycerides. Acting alone, neither causes diabetes. But when both substrates are low, diabetes results.

"Our findings show what happens when we knock out these two protein signals, causing conditions to worsen," said Dr. Kahn. "The next step is to look for ways to keep their levels up, possibly leading to new ways to prevent and treat diabetes."



Publication: Published Feb. 10 in the online edition of the Journal of Clinical Investigatio
On the web: Joslin Diabetes Center  

Advertise in this space for $10 per month. Contact us today.


Related Diabetes News
Diabetes increases the risk of developing and dying from breast and colon cancer
Vitamin D reduces blood pressure and relieves depression in women with diabetes
New mouse model confirms how type 2 diabetes develops
Gastric bypass findings could lead to diabetes treatment
Creeping epidemic of obesity hits Asia Pacific region
CVD time bomb set to explode in Gulf region in 10-15 years
How our nerves regulate insulin secretion
Targeting neurotransmitter may help treat gastrointestinal conditions
Moderate coffee consumption may reduce risk of diabetes by up to 25 percent
A leap forward in the quest to develop an artificial pancreas

Subscribe to Diabetes Newsletter

Enter your email address:


 Additional information about the news article
About Joslin Diabetes Center
Joslin Diabetes Center, dedicated to conquering diabetes in all of its forms, is the global leader in diabetes research, care and education. Founded in 1898, Joslin is an independent nonprofit institution affiliated with Harvard Medical School. Joslin research is a team of more than 300 people at the forefront of discovery aimed at preventing and curing diabetes. Joslin Clinic, affiliated with Beth Israel Deaconess Medical Center in Boston, the nationwide network of Joslin Affiliated Programs, and the hundreds of Joslin educational programs offered each year for clinicians, researchers and patients, enable Joslin to develop, implement and share innovations that immeasurably improve the lives of people with diabetes. As a nonprofit, Joslin benefits from the generosity of donors in advancing its mission.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)