RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
  Diabetes
   Insulin Resistance
   NIDDM
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Diabetes Channel

subscribe to Diabetes newsletter
Latest Research : Endocrinology : Diabetes

   EMAIL   |   PRINT
Drugs targeted at muscle cells can be of use in the treatment of Insulin Resistance

Apr 18, 2005 - 9:28:00 PM
“The discoveries we’ve made are important bearing in mind that one of the problems with insulin therapy for patients with Type 2 diabetes is that they eventually develop a resistance to the insulin and no longer respond to the treatment. The PFAARä drugs we have studied, on the other hand, have a direct effect on the cultivated muscle cells and act independently of insulin metabolism. If we can show that the drugs are also effective on living patients, it means that they could one day be used for the treatment of patients who have developed insulin resistance.”

 
[RxPG] Type 2 diabetes is a clinical disease characterised by disruption to the metabolism of glucose and lipids as well as to the production of and physiological reactions to insulin. These disruptions are partly due to a reduced absorption of glucose in the cells that form the body’s fat and muscle tissue. Now scientists at Karolinska Institutet have established that a type of drug targeted at receptors in the muscle cells increases the metabolism and absorption of glucose, making it a potential tool in the treatment of diabetes.

These new findings were published recently in the scientific journal Diabetes. The study has been partly financed with two EU grants from the sixth framework programme (EUGENE2 and EXGENESIS), which were recently awarded to an international network of researchers that includes the authors of the article.

The molecular mechanisms behind Type 2 diabetes are not fully known, but both hereditary and environmental factors are thought to contribute to its development. The prevalence and number of new cases of Type 2 diabetes are steadily increasing in the West, owing, it is thought, to the excessive calorie-rich diets and more sedentary nature of typical Western lifestyles.

The receptors in the muscle cells that were studied are called peroxisome proliferators-activated delta receptors (PFAARä) and they reside in the nucleus where they regulate a large number of enzymes involved in the cell’s metabolism and energy production. Using human muscle cells cultivated in vitro, the researchers were able to show that drugs that bind to PFAARä increase the absorption of glucose in the muscle cells. The two experimental drugs tested in the study were GW501516 and GW0742. The trials demonstrate that the two drugs bind to PFAARä, which triggers a series of reactions within the cells. This, in turn, helps to boost glucose absorption into the cells. By specifically blocking certain processes in the cells, the scientists were also able to show that the effects of the drugs resembled those caused by physical activity. They were also able to show that this was not the result of any effect on insulin signals.

“The discoveries we’ve made are important bearing in mind that one of the problems with insulin therapy for patients with Type 2 diabetes is that they eventually develop a resistance to the insulin and no longer respond to the treatment,” say Anna Krook and Juleen Zierath, two of the KI research scientists behind the study. “The PFAARä drugs we have studied, on the other hand, have a direct effect on the cultivated muscle cells and act independently of insulin metabolism. If we can show that the drugs are also effective on living patients, it means that they could one day be used for the treatment of patients who have developed insulin resistance.”



Publication: These new findings were published recently in the scientific journal Diabetes.
On the web: info.ki.se/index_en.html 

Advertise in this space for $10 per month. Contact us today.


Related Diabetes News
Diabetes increases the risk of developing and dying from breast and colon cancer
Vitamin D reduces blood pressure and relieves depression in women with diabetes
New mouse model confirms how type 2 diabetes develops
Gastric bypass findings could lead to diabetes treatment
Creeping epidemic of obesity hits Asia Pacific region
CVD time bomb set to explode in Gulf region in 10-15 years
How our nerves regulate insulin secretion
Targeting neurotransmitter may help treat gastrointestinal conditions
Moderate coffee consumption may reduce risk of diabetes by up to 25 percent
A leap forward in the quest to develop an artificial pancreas

Subscribe to Diabetes Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)