RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
  Diabetes
   Insulin Resistance
   NIDDM
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Diabetes Channel

subscribe to Diabetes newsletter
Latest Research : Endocrinology : Diabetes

   EMAIL   |   PRINT
Nerve signals to pancreas after a meal determine blood sugar control

Jun 6, 2006 - 11:42:00 PM , Reviewed by: Sanjukta Acharya
"However, the importance of parasympathetic innervation of pancreatic beta cells in maintaining normal glucose balance had remained controversial,"

 
[RxPG] Nerve signals relayed directly to the pancreas after eating a meal play a critical role in normal blood sugar control, according to a report in the June 7, 2006, Cell Metabolism. Therefore, drugs that increase the sensitivity to such signals might offer a new approach to diabetes treatment, the researchers said.

Mice in which the pancreas cells that produce insulin, or beta cells, lack so-called M3 muscarinic acetylcholine receptors develop some symptoms of diabetes, including impaired glucose tolerance and reduced insulin release, the authors report. M3 receptors are normally on the receiving end of messages relayed by involuntary nerves that indicate the presence of food.

In contrast, mice genetically altered to harbor an excess number of beta cell M3 receptors show the opposite: a profound increase in glucose tolerance and insulin release, the researchers found. Moreover, such animals become resistant to developing symptoms of diabetes or prediabetes when fed a high-fat diet.

The findings suggest that drugs that boost the activity of the M3 receptors on pancreatic beta cells might have therapeutic potential, said Jurgen Wess of the National Institute of Diabetes and Digestive and Kidney Diseases.

"There may be ways to specifically drive up the number of M3 receptors expressed in pancreatic beta cells," Wess said. "It might also be possible to enhance M3 receptor signaling in beta cells by targeting proteins that modulate M3 receptor function in a specific fashion."

Receptors of the same type are also found in other parts of the body, he explained. Therefore, drugs that directly stimulate M3 receptors in general would likely come with problematic side effects--for example, causing smooth muscles to contract.

One of three branches of the involuntary nervous system, the parasympathetic, or "rest and digest" system fulfills many roles--slowing the heart rate, dilating blood vessels, and stimulating digestive secretions.

Food intake is known to trigger an increase in parasympathetic nerve impulses involving signals of different origins that are integrated in the brain, the researchers said. In the pancreas, parasympathetic nerve endings release the messenger acetylcholine before and most likely after food is absorbed.

"However, the importance of parasympathetic innervation of pancreatic beta cells in maintaining normal glucose balance had remained controversial," Wess said. "Much of this controversy has arisen because peripheral parasympathetic nerves release at least five different neurotransmitters, and increased parasympathetic outflow affects the function of many organs and tissues that have important metabolic functions."

The researchers overcame those difficulties in the current study by examining the glucose tolerance and insulin release of otherwise normal mice that were deficient for M3 receptors only in pancreatic beta cells, and in mice that contained an increased number of M3 receptors specifically in beta cells.

"We've established an important role for the native M3 receptor in beta cells in maintaining normal insulin release and blood glucose levels," Wess said. "It's also clear from our findings that the parasympathetic nervous system's modulation of blood sugar is not a transient event--its effects on the pancreas are sustained for a long time after a meal."



Publication: Gautam et al.: "A critical role for â cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo." Publishing in Cell Metabolism 3, 449-461, June 2006 DOI 10.1016/j.cmet.2006.04.009
On the web: www.cellmetabolism.org 

Advertise in this space for $10 per month. Contact us today.


Related Diabetes News
Diabetes increases the risk of developing and dying from breast and colon cancer
Vitamin D reduces blood pressure and relieves depression in women with diabetes
New mouse model confirms how type 2 diabetes develops
Gastric bypass findings could lead to diabetes treatment
Creeping epidemic of obesity hits Asia Pacific region
CVD time bomb set to explode in Gulf region in 10-15 years
How our nerves regulate insulin secretion
Targeting neurotransmitter may help treat gastrointestinal conditions
Moderate coffee consumption may reduce risk of diabetes by up to 25 percent
A leap forward in the quest to develop an artificial pancreas

Subscribe to Diabetes Newsletter

Enter your email address:


 Additional information about the news article
The researchers include Dinesh Gautam, Jongrye Jeon, Bo Li, Jian Hua Li, Yinghong Cui, Huiyan Lu, Chuxia Deng, Thomas Heard, and Jurgen Wess of the National Institute of Diabetes and Digestive and Kidney Diseases in Bethesda, Maryland; Sung-Jun Han of the National Institute of Diabetes and Digestive and Kidney Diseases in Bethesda, Maryland and Institut Pasteur Korea in Seoul, Korea (present address); Fadi F. Hamdan of the National Institute of Diabetes and Digestive and Kidney Diseases in Bethesda, Maryland and Universite de Montreal in Montreal, Canada (present address); David Mears of Uniformed Services University in Bethesda, Maryland and University of Chile in Santiago, Chile (present address).

This research was supported by the Intramural Research Program of the NIH, NIDDK.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)