XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 Asian Health
 Food & Nutrition
 Men's Health
 Mental Health
 Occupational Health
 Public Health
 Sleep Hygiene
 Women's Health
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 World Healthcare
   Latest Research
 Alternative Medicine
 Clinical Trials
 Infectious Diseases
  Brain Diseases
  Demyelinating Diseases
   Multiple Sclerosis
  Neurodegenerative Diseases
  Spinal Cord Diseases
  Trigeminal Neuralgia
 Sports Medicine
   Medical News
 Awards & Prizes
   Special Topics
 Odd Medical News

Last Updated: Nov 18, 2006 - 1:55:25 PM

Multiple Sclerosis Channel
subscribe to Multiple Sclerosis newsletter

Latest Research : Neurosciences : Demyelinating Diseases : Multiple Sclerosis

   DISCUSS   |   EMAIL   |   PRINT
CNS can send out signals to invite autoimmune attacks
Jun 16, 2006 - 11:49:00 PM, Reviewed by: Dr. Priya Saxena

"Experiments by others suggested that natalizumab prevented immune cells from crossing the blood-brain barrier it was thought to prevent the cells from leaving the blood stream,"

It may sound like a case of blame the victim, but researchers at Washington University School of Medicine in St. Louis have shown that cells in the central nervous system can sometimes send out signals that invite hostile immune system attacks. In mice the researchers studied, this invitation resulted in damage to the protective covering of nerves, causing a disease resembling multiple sclerosis.

"It's been clear for quite a while that our own lymphocytes (white blood cells) have the ability to enter the central nervous system and react with the cells there," says John Russell, Ph.D., professor of molecular biology and pharmacology. "Under normal circumstances, the brain and the immune system cooperate to keep out those cells that might harm the brain. But in people with multiple sclerosis, they get in."

The researchers found that they could prevent destructive immune cells from entering nervous system tissue by eliminating a molecular switch that sends "come here" messages to immune cells. Ordinarily, flipping that switch would cause immune cells to rush to the vicinity of the cells that sent the signals and destroy whatever they consider a danger including nerve cell coatings.

But in the mice in which the switch was removed, the researchers saw that immune cells previously primed by the scientists to attack the central nervous system (CNS) did not enter the CNS, and the mice stayed healthy.

In contrast, normal mice treated with the same hostile immune cells had numerous immune cells in their CNS tissue and developed symptoms similar to multiple sclerosis.

"What allows the primed lymphocytes into the CNS are signals from the CNS asking them in," Russell says. "We determined that the astrocytes, the specialized cells that provide nutrients to neurons, are among the cells most active in sending signals to attract lymphocytes."

The molecular switch that sends the call to immune cells is termed the tumor necrosis factor receptor (TNFR). When TNFR is activated, it causes cells to send out signal molecules called chemokines that direct immune cells to the site of damage or infection. The researchers found that astrocytes in mice were producing chemokines in response to activation of their TNFR molecules.

TNFR activation also makes the astrocytes bristle with specific adhesion molecules that act like Velcro to bind to similar molecules on the surface of the immune cells. That allows the immune cells that are attracted by the chemokines to stick around and do more harm.

One of the most promising new drugs for treating multiple sclerosis, natalizumab (tradename Tysabri), works by blocking the ability of the immune cells to stick in the CNS through this Velcro mechanism, Russell notes. Natalizumab is being tested in clinical trials and appears to be much better at preventing the nerve cell destruction associated with multiple sclerosis than previous therapies.

"Experiments by others suggested that natalizumab prevented immune cells from crossing the blood-brain barrier it was thought to prevent the cells from leaving the blood stream," Russell says. "We are working on that question, and we think that it doesn't necessarily prevent them from getting out of the blood, but it does keep them from getting further into the brain. The immune cells pile up in the space around the blood vessels. This space, the perivascular space, serves as a gatekeeper to determine what gets in and what doesn't."

Next, the research team will study various regions of the brain to determine the types of signals sent to and from different areas of the CNS to the immune system.

- Gimenez MA, Sim J, Archambault AS, Klein RS, Russell JH. A tumor necrosis factor dependent receptor 1-dependent conversation between central nervous system-specific T cells and the central nervous system is required for inflammatory infiltration of the spinal cord. American Journal of Pathology 2006;168(4):1200-1209.


Subscribe to Multiple Sclerosis Newsletter
E-mail Address:


Written By Gwen Ericson

Funding from the National Institutes of Health, the National Multiple Sclerosis Society and Pfizer Inc. supported this research.

Washington University School of Medicine's full-time and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked fourth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Related Multiple Sclerosis News
Smoking associated with rapid progression of multiple sclerosis
Testosterone may help men with multiple sclerosis
Age of onset but not severity of Multiple Sclerosis inherited from parents
Cause of nerve fiber damage in multiple sclerosis identified
Fampridine may hold promise for treating Multiple Sclerosis
CNS can send out signals to invite autoimmune attacks
Natalizumab Re-approved for Relapsing Multiple Sclerosis
Efficacy in relapse rate reduction beyond five years shown for interferon beta 1b in Multiple Sclerosis
Systematic Review Questions Accuracy of MRI in Multiple Sclerosis
Statins could prove useful in treating MS

For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page


© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us