RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
  Brain Diseases
  Demyelinating Diseases
  Headache
  Memory
  Neurochemistry
  Neurodegenerative Diseases
  Regeneration
  Spinal Cord Diseases
  Stroke
  Taste
  Trigeminal Neuralgia
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Regeneration Channel

subscribe to Regeneration newsletter
Latest Research : Neurosciences : Regeneration

   EMAIL   |   PRINT
Common brain cells may have stem-cell-like potential

Aug 17, 2006 - 4:02:00 PM , Reviewed by: Venkat Yelamanchili
"It was a long and difficult process, but we were able to induce what are basically support cells in the human brain to form beautiful new neurons in a dish"

 
[RxPG] University of Florida researchers have shown ordinary human brain cells may share the prized qualities of self-renewal and adaptability normally associated with stem cells.

Writing online in Development, scientists from UF's McKnight Brain Institute describe how they used mature human brain cells taken from epilepsy patients to generate new brain tissue in mice.

Furthermore, they can coax these pedestrian human cells to produce large amounts of new brain cells in culture, with one cell theoretically able to begin a cycle of cell division that does not stop until the cells number about 10 to the 16th power.

"We can theoretically take a single brain cell out of a human being and - with just this one cell - generate enough brain cells to replace every cell of the donor's brain and conceivably those of 50 million other people," said Dennis Steindler, Ph.D., executive director of UF's McKnight Brain Institute. "This is a completely new source of human brain cells that can potentially be used to fight Parkinson's disease, Alzheimer's disease, stroke and a host of other brain disorders. It would probably only take months to get enough material for a human transplant operation."
Common brain cells may have stem-cell-like potential
UF McKnight Brain Institute researchers were able to purify and grow highly adaptable cells called adult human neural progenitors from mature human brain tissue. The green marker indicates a support brain cell called an astrocyte and the red marker is an indication of a stem cell, which is highly valued for its ability to transform into any cell type. Blue marks the cell nucleus. Credit: Noah Walton/UF McKnight Brain Institute

The findings document for the first time the ability of common human brain cells to morph into different cell types, a previously unknown characteristic, and are the result of the research team's long-term investigations of adult human stem cells and rodent embryonic stem cells.

Last year, the researchers published details about how they used stem-like brain cells from rodents to duplicate neurogenesis - the process of generating new brain cells - in a dish. The latest findings go further, showing common human brain cells can generate different cell types in cell cultures. In addition, when researchers transplanted these human cells into mice, the cells effectively incorporated in a variety of brain regions.

The human cells were acquired from patients who had undergone surgical treatment for epilepsy and were extracted from support tissue within the gray matter, which is not known for harboring stem cells.

When the donor cells were subjected to a bath of growth agents within cell cultures, a type of cell emerged that behaves like something called a neural progenitor - a cell that is a bit further along in development than a stem cell but shares a stem cell's vaunted ability to divide and transform into different types of brain cells.

Even when the cells from the epilepsy patients were transplanted into mice, bypassing any growth enhancements, they were able to take cues from their surroundings and produce new neurons.

"It was a long and difficult process, but we were able to induce what are basically support cells in the human brain to form beautiful new neurons in a dish," said Noah Walton, a graduate student in the neuroscience department at the UF College of Medicine. "But what we really needed is for these support cells to turn into neurons in the brain, and we found we could get them to do it. Something in the environment in the rodent brain is sufficient to get these cells to become neurons."

Scientists speculate a small amount of existing progenitors may be emerging from the gray matter of the brain and multiplying in torrents, or perhaps the aging clock of the mature cells actually turns backward when the donor cells are in a new environment, returning them to past lives as progenitors or as stem cells.

"It's been shown that the same sorts of tissue from the mouse brain can give rise to rapidly dividing cells, but this shows it is true with human cells," said Ben Barres, M.D., Ph.D., a professor of neurobiology at the Stanford University School of Medicine who was not involved in the research. "That these cells were able to integrate into tissue in an animal model and actually survive - it was extremely important to show that. Now the question is what will these cells do in a human brain? Will they be able to survive for the long term and rebuild circuitry? This work is a first step toward that end."

In addition to using the cells in treatments to repair or replace damaged brain tissue, the ability to massively expand cell populations could prove useful in efforts to test the safety and efficacy of new drugs. It is also possible to genetically modify the cells to produce neurotrophins - substances that help brain tissue survive, researchers said.



Publication: Aug. 16 online issue of journal Development
On the web: www.ufl.edu 

Advertise in this space for $10 per month. Contact us today.


Related Regeneration News
Salamanders can regenerate damaged lungs
Severed nerve fibers in spinal cord can regenerate for long distances
Common brain cells may have stem-cell-like potential
Using Embryonic Stem Cells to Awaken Latent Motor Nerve Repair
Understanding how axons find their destinations
Novel stem cell technology leads to better spinal cord repair
Myosin-II: A new focus for the mechanism of nerve growth
Structural remodeling of neurons demonstrated in mature brains
How "baby" neurons are integrated into brain
Nerve regeneration is possible in spinal cord injuries

Subscribe to Regeneration Newsletter

Enter your email address:


 Additional information about the news article
The research was supported by grants from the National Institute of Neurological Disorders and Stroke and the National Heart, Lung and Blood Institute of the National Institutes of Health. Steindler and co-senior author Bjorn Scheffler, M.D., a UF neuroscientist, are involved with RegenMed Inc., a biotechnology company that seeks to use stem cell technology to develop human therapeutics.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)