RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
  Brain Diseases
  Demyelinating Diseases
  Headache
  Memory
  Neurochemistry
  Neurodegenerative Diseases
  Regeneration
  Spinal Cord Diseases
  Stroke
  Taste
  Trigeminal Neuralgia
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Regeneration Channel

subscribe to Regeneration newsletter
Latest Research : Neurosciences : Regeneration

   EMAIL   |   PRINT
New findings might advance search for new therapies for injured nerve fibers

Mar 3, 2005 - 5:27:00 PM
Vimentin links up to motor proteins that carry the message along the axon, and thanks to this linkage and protection, the messengers can safely transmit their message, thus bringing the injured axon's call for help to the cell body. The scientists hope that these findings might advance the future search for new therapies for injured nerve fibers.

 
[RxPG] Long distance messengers star in many heroic tales, perhaps the most famous being the one about the runner who carried the news about the victory of the Greeks over the Persians in the fateful battle of Marathon. A team of researchers at the Weizmann Institute of Science has now discovered how molecular messengers perform a crucial role in the ability of injured nerve cells to heal themselves.

A nerve cell has a cell body and a long extension, called an axon, which in humans can reach up to one meter in length. Nerve cells belonging to the peripheral nervous system can regrow when their axons are damaged. But how does the damaged axon inform the cell body that it must start producing vital proteins for the healing? That's precisely where the molecular messengers, proteins called Erk-1 and Erk-2, enter the picture. When the axon is injured, these proteins bind to molecules of phosphorus. In this phosphorylated state, they can communicate to command centers in the cell, transmitting a message that activates certain genes in the cell body, which then manufactures proteins that are vital for the healing of the injured axon. The problem is that the messengers must transmit their phosphorus message over a great distance along the axon, and in the course of this arduous journey can easily lose their phosphorus en route.

Dr. Michael Fainzilber and graduate students Eran Perlson and Shlomit Hanz of the Weizmann Institute's Biological Chemistry Department found that the Erk messengers, together with their phosphorus message, bind to a special molecule called vimentin, which protects them from dismantling or loss of the phosphorus. Vimentin links up to motor proteins that carry the message along the axon, and thanks to this linkage and protection, the messengers can safely transmit their message, thus bringing the injured axon's call for help to the cell body. The scientists hope that these findings might advance the future search for new therapies for injured nerve fibers.



Publication: The study will be published in the March 3'rd issue of Neuron.
On the web: http://www.weizmann.ac.il/ 

Advertise in this space for $10 per month. Contact us today.


Related Regeneration News
Salamanders can regenerate damaged lungs
Severed nerve fibers in spinal cord can regenerate for long distances
Common brain cells may have stem-cell-like potential
Using Embryonic Stem Cells to Awaken Latent Motor Nerve Repair
Understanding how axons find their destinations
Novel stem cell technology leads to better spinal cord repair
Myosin-II: A new focus for the mechanism of nerve growth
Structural remodeling of neurons demonstrated in mature brains
How "baby" neurons are integrated into brain
Nerve regeneration is possible in spinal cord injuries

Subscribe to Regeneration Newsletter

Enter your email address:


 Additional information about the news article
The research team also included Prof. Rony Seger of the Biological Regulation Department, Prof. Michael Elbaum of the Materials and Interfaces Department, graduate students Keren Ben Yaakov and Yael Segal-Ruder of the Biological Chemistry Department, and postdoctoral fellow Dr. Daphna Frenkiel-Krispin of the Materials and Interfaces Department.

Dr. Michael Fainzilber's research is supported by the Y. Leon Benoziyo Institute for Molecular Medicine; Mr. and Mrs. Alan Fischer, Larchmont, NY; the Abisch Frenkel Foundation for the Promotion of Life Sciences; the Irwin Green Alzheimer's Research Fund and the Buddy Taub Foundation.

Dr. Fainzilber is the incumbent of the Daniel E. Koshland Sr. Career Development Chair.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)